929 resultados para Cross-device interaction
Resumo:
This qualitative study looks at the joint output of 20 architecture students from 2 different countries during their short respective Study Tours to each other’s country to discern the effect of cross-cultural experiences on their learning. This paper uses the students’ joint design efforts and reflective writings to investigate the outcome of this cross-cultural educational exchange. Their joint design efforts resulted in the making of small built structures, drawings and collaborative design proposals for an urban setting. In addition, a short questionnaire and personal interviews were also used as methods to gain insight into their experience and to use as a comparative study. The question is also raised in this paper of whether spontaneous friendship among students is integral to long term learning in a cross-cultural context in comparison to pre-designed learning objectives on the part of the educators. This paper also initiates the dialogue of the extent of cultural influences and universal ideas on collaborative architectural design. With increasing joint design ventures between architectural firms in different countries, there is interest in how collaborative design can be understood in a cross-cultural context. This paper examines short term cross cultural experiences and its contribution to architectural education.
Resumo:
Background Physiotherapists are a professional group with a high rate of attrition and at high risk of musculoskeletal disorders. The purpose of this investigation was to examine the physical activity levels and health-related quality of life of physiotherapists working in metropolitan clinical settings in an Australian hospital and health service. It was hypothesized that practicing physiotherapists would report excellent health-related quality of life and would already be physically active. Such a finding would add weight to a claim that general physical activity conditioning strategies may not be useful for preventing musculoskeletal disorders among active healthy physiotherapists, but rather, future investigations should focus on the development and evaluation of role specific conditioning strategies. Methods A questionnaire was completed by 44 physiotherapists from three inpatient units and three ambulatory clinics (63.7% response rate). Physical activity levels were reported using the Active Australia Survey. Health-related quality of life was examined using the EQ-5D instrument. Physical activity and EQ-5D data were examined using conventional descriptive statistics; with domain responses for the EQ-5D presented in a frequency histogram. Results The majority of physiotherapists in this sample were younger than 30 years of age (n = 25, 56.8%) consistent with the presence of a high attrition rate. Almost all respondents exceeded minimum recommended physical activity guidelines (n = 40, 90.9%). Overall the respondents engaged in more vigorous physical activity (median = 180 minutes) and walking (median = 135 minutes) than moderate exercise (median = 35 minutes) each week. Thirty-seven (84.1%) participants reported no pain or discomfort impacting their health-related quality of life, with most (n = 35,79.5%) being in full health. Conclusions Physical-conditioning based interventions for the prevention of musculoskeletal disorders among practicing physiotherapists may be better targeted to role or task specific conditioning rather than general physical conditioning among this physically active population. It is plausible that an inherent attrition of physiotherapists may occur among those not as active or healthy as therapists who cope with the physical demands of clinical practice. Extrapolation of findings from this study may be limited due to the sample characteristics. However, this investigation addressed the study objectives and has provided a foundation for larger scale longitudinal investigations in this field.
Resumo:
Articular cartilage is the load-bearing tissue that consists of proteoglycan macromolecules entrapped between collagen fibrils in a three-dimensional architecture. To date, the drudgery of searching for mathematical models to represent the biomechanics of such a system continues without providing a fitting description of its functional response to load at micro-scale level. We believe that the major complication arose when cartilage was first envisaged as a multiphasic model with distinguishable components and that quantifying those and searching for the laws that govern their interaction is inadequate. To the thesis of this paper, cartilage as a bulk is as much continuum as is the response of its components to the external stimuli. For this reason, we framed the fundamental question as to what would be the mechano-structural functionality of such a system in the total absence of one of its key constituents-proteoglycans. To answer this, hydrated normal and proteoglycan depleted samples were tested under confined compression while finite element models were reproduced, for the first time, based on the structural microarchitecture of the cross-sectional profile of the matrices. These micro-porous in silico models served as virtual transducers to produce an internal noninvasive probing mechanism beyond experimental capabilities to render the matrices micromechanics and several others properties like permeability, orientation etc. The results demonstrated that load transfer was closely related to the microarchitecture of the hyperelastic models that represent solid skeleton stress and fluid response based on the state of the collagen network with and without the swollen proteoglycans. In other words, the stress gradient during deformation was a function of the structural pattern of the network and acted in concert with the position-dependent compositional state of the matrix. This reveals that the interaction between indistinguishable components in real cartilage is superimposed by its microarchitectural state which directly influences macromechanical behavior.
Resumo:
Purpose: This study investigated the effect of chemical conjugation of the amino acid L-leucine to the polysaccharide chitosan on the dispersibility and drug release pattern of a polymeric nanoparticle (NP)-based controlled release dry powder inhaler (DPI) formulation. Methods: A chemical conjugate of L-leucine with chitosan was synthesized and characterized by Infrared (IR) Spectroscopy, Nuclear Magnetic Resonance (NMR) Spectroscopy, Elemental Analysis and X-ray Photoelectron Spectroscopy (XPS). Nanoparticles of both chitosan and its conjugate were prepared by a water-in-oil emulsification – glutaraldehyde cross-linking method using the antihypertensive agent, diltiazem (Dz) hydrochloride as the model drug. The surface morphology and particle size distribution of the nanoparticles were determined by Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS). The dispersibility of the nanoparticle formulation was analysed by a Twin Stage Impinger (TSI) with a Rotahaler as the DPI device. Deposition of the particles in the different stages was determined by gravimetry and the amount of drug released was analysed by UV spectrophotometry. The release profile of the drug was studied in phosphate buffered saline at 37 ⁰C and analyzed by UV spectrophotometry. Results: The TSI study revealed that the fine particle fractions (FPF), as determined gravimetrically, for empty and drug-loaded conjugate nanoparticles were significantly higher than for the corresponding chitosan nanoparticles (24±1.2% and 21±0.7% vs 19±1.2% and 15±1.5% respectively; n=3, p<0.05). The FPF of drug-loaded chitosan and conjugate nanoparticles, in terms of the amount of drug determined spectrophotometrically, had similar values (21±0.7% vs 16±1.6%). After an initial burst, both chitosan and conjugate nanoparticles showed controlled release that lasted about 8 to 10 days, but conjugate nanoparticles showed twice as much total drug release compared to chitosan nanoparticles (~50% vs ~25%). Conjugate nanoparticles also showed significantly higher dug loading and entrapment efficiency than chitosan nanoparticles (conjugate: 20±1% & 46±1%, chitosan: 16±1% & 38±1%, n=3, p<0.05). Conclusion: Although L-leucine conjugation to chitosan increased dispersibility of formulated nanoparticles, the FPF values are still far from optimum. The particles showed a high level of initial burst release (chitosan, 16% and conjugate, 31%) that also will need further optimization.
Resumo:
The non-canonical Wnt pathway, a regulator of cellular motility and morphology, is increasingly implicated in cancer metastasis. In a quantitative PCR array analysis of 84 Wnt pathway associated genes, both non-canonical and canonical pathways were activated in primary and metastatic tumors relative to normal prostate. Expression of the Wnt target gene PITX2 in a prostate cancer (PCa) bone metastasis was strikingly elevated over normal prostate (over 2,000-fold) and primary prostate cancer (over 200-fold). The elevation of PITX2 protein was also evident on tissue microarrays, with strong PITX2 immunostaining in PCa skeletal and, to a lesser degree, soft tissue metastases. PITX2 is associated with cell migration during normal tissue morphogenesis. In our studies, overexpression of individual PITX2A/B/C isoforms stimulated PC-3 PCa cell motility, with the PITX2A isoform imparting a specific motility advantage in the presence of non-canonical Wnt5a stimulation. Furthermore, PITX2 specific shRNA inhibited PC-3 cell migration toward bone cell derived chemoattractant. These experimental results support a pivotal role of PITX2A and non-canonical Wnt signaling in enhancement of PCa cell motility, suggest PITX2 involvement in homing of PCa to the skeleton, and are consistent with a role for PITX2 in PCa metastasis to soft and bone tissues. Our findings, which significantly expand previous evidence that PITX2 is associated with risk of PCa biochemical recurrence, indicate that variation in PITX2 expression accompanies and may promote prostate tumor progression and metastasis.
Resumo:
This thesis presents social requirements and design considerations from a study evaluating interactive approaches to social navigation and user-generated information sharing in urban environments using mobile devices. It investigates innovative ways to leverage mobile information and communication technology in order to provide a social navigation platform for residents and visitors in and for public urban places. Through a design case study this work presents CityFlocks, a mobile information system that offers an easy way for information-seeking new residents or visitors to access tacit knowledge from local people about their new community. It is intended to enable visitors and new residents in a city to tap into the knowledge and experiences of local residents in order to gather information about their new environment. Its design specifically aims to lower existing barriers of access and facilitate social navigation in urban places. In various user tests it evaluates two general user interaction alternatives – direct and indirect social navigation – and analyses which interaction method works better for people using a mobile device to socially navigate urban environments. The outcomes are relevant for the user interaction design of future mobile information systems that leverage the social navigation approach.
Resumo:
We report on an alternative OCGM interface for a bulletin board, where a user can pin a note or a drawing, and actually shares contents. Exploiting direct and continuous manipulations, opposite to discrete gestures, to explore containers, the proposed interface supports a more natural and immediate interaction. It manages also the presence of different simultaneous users, allowing for the creation of local multimedia contents, the connection to social networks, providing a suitable working environment for cooperative and collaborative tasks in a multi-touch setup, such as touch-tables, interactive walls or multimedia boards
Resumo:
Composite steel-concrete structures experience non-linear effects which arise from both instability-related geometric non-linearity and from material non-linearity in all of their component members. Because of this, conventional design procedures cannot capture the true behaviour of a composite frame throughout its full loading range, and so a procedure to account for those non-linearities is much needed. This paper therefore presents a numerical procedure capable of addressing geometric and material non-linearities at the strength limit state based on the refined plastic hinge method. Different material non-linearity for different composite structural components such as T-beams, concrete-filled tubular (CFT) and steel-encased reinforced concrete (SRC) sections can be treated using a routine numerical procedure for their section properties in this plastic hinge approach. Simple and conservative initial and full yield surfaces for general composite sections are proposed in this paper. The refined plastic hinge approach models springs at the ends of the element which are activated when the surface defining the interaction of bending and axial force at first yield is reached; a transition from the first yield interaction surface to the fully plastic interaction surface is postulated based on a proposed refined spring stiffness, which formulates the load-displacement relation for material non-linearity under the interaction of bending and axial actions. This produces a benign method for a beam-column composite element under general loading cases. Another main feature of this paper is that, for members containing a point of contraflexure, its location is determined with a simple application of the method herein and a node is then located at this position to reproduce the real flexural behaviour and associated material non-linearity of the member. Recourse is made to an updated Lagrangian formulation to consider geometric non-linear behaviour and to develop a non-linear solution strategy. The formulation with the refined plastic hinge approach is efficacious and robust, and so a full frame analysis incorporating geometric and material non-linearity is tractable. By way of contrast, the plastic zone approach possesses the drawback of strain-based procedures which rely on determining plastic zones within a cross-section and which require lengthwise integration. Following development of the theory, its application is illustrated with a number of varied examples.
Resumo:
Introduction: The built environment is increasingly recognised as being associated with health outcomes. Relationships between the built environment and health differ among age groups, especially between children and adults, but also between younger, mid-age and older adults. Yet few address differences across life stage groups within a single population study. Moreover, existing research mostly focuses on physical activity behaviours, with few studying objective clinical and mental health outcomes. The Life Course Built Environment and Health (LCBEH) project explores the impact of the built environment on self-reported and objectively measured health outcomes in a random sample of people across the life course. Methods and analysis: This cross-sectional data linkage study involves 15 954 children (0–15 years), young adults (16–24 years), adults (25–64 years) and older adults (65+years) from the Perth metropolitan region who completed the Health and Wellbeing Surveillance System survey administered by the Department of Health of Western Australia from 2003 to 2009. Survey data were linked to Western Australia's (WA) Hospital Morbidity Database System (hospital admission) and Mental Health Information System (mental health system outpatient) data. Participants’ residential address was geocoded and features of their ‘neighbourhood’ were measured using Geographic Information Systems software. Associations between the built environment and self-reported and clinical health outcomes will be explored across varying geographic scales and life stages. Ethics and dissemination: The University of Western Australia's Human Research Ethics Committee and the Department of Health of Western Australia approved the study protocol (#2010/1). Findings will be published in peer-reviewed journals and presented at local, national and international conferences, thus contributing to the evidence base informing the design of healthy neighbourhoods for all residents.
Resumo:
BACKGROUND: The intense pain and anxiety triggered by burns and their associated wound care procedures are well established in the literature. Non-pharmacological intervention is a critical component of total pain management protocols and is used as an adjunct to pharmacological analgesia. An example is virtual reality, which has been used effectively to dampen pain intensity and unpleasantness. Possible links or causal relationships between pain/anxiety/stress and burn wound healing have previously not been investigated. The purpose of this study is to investigate these relationships, specifically by determining if a newly developed multi-modal procedural preparation and distraction device (Ditto) used during acute burn wound care procedures will reduce the pain and anxiety of a child and increase the rate of re-epithelialization. METHODS/DESIGN: Children (4 to 12 years) with acute burn injuries presenting for their first dressing change will be randomly assigned to either the (1) Control group (standard distraction) or (2) Ditto intervention group (receiving Ditto, procedural preparation and Ditto distraction). It is intended that a minimum of 29 participants will be recruited for each treatment group. Repeated measures of pain intensity, anxiety, stress and healing will be taken at every dressing change until complete wound re-epithelialization. Further data collection will aid in determining patient satisfaction and cost effectiveness of the Ditto intervention, as well as its effect on speed of wound re-epithelialization. DISCUSSION: Results of this study will provide data on whether the disease process can be altered by reducing stress, pain and anxiety in the context of acute burn wounds. TRIAL REGISTRATION: ACTRN12611000913976.
Resumo:
Arrangement-making is understood to be a ‘closing-relevant action’ (Schegloff & Sacks 1973), but little attention has been given to how people arrive at mutually acceptable plans for the future. Telephone conversations between clients and staff of Community and Home Care (CHC) services were studied to identify how arrangements for future services were made. A recurrent sequence was observed in which clients were informed of future arrangement and were prompted to reply with ‘response solicitation’ (Jefferson 1981). Response solicitations were observed at two points: either tagged to the end of an informing, or following a recipient’s response to the informing. We show how response solicitations are routinely used in instances where recipients have some discretion in relation to the arrangement under discussion. They are a means by which an informing party can display to their interlocutor that they, as recipient, have some discretion to exercise in the matter. These findings are discussed with reference to prior research on arrangement-making in other settings, which suggests the general nature of this practice.
Resumo:
Wireless networked control systems (WNCSs) have been increasingly deployed in industrial applications. As they require timely data packet transmissions, it is difficult to make efficient use of the limited channel resources, particularly in contention based wireless networks in the layered network architecture. Aiming to maintain the WNCSs under critical real-time traffic condition at which the WNCSs marginally meet the real-time requirements, a cross-layer design (CLD) approach is presented in this paper to adaptively adjust the control period to achieve improved channel utilization while still maintaining effective and timely packet transmissions. The effectiveness of the proposed approach is demonstrated through simulation studies.
Resumo:
This paper uses finite element techniques to investigate the performance of buried tunnels subjected to surface blasts incorporating fully coupled Fluid Structure Interaction and appropriate material models which simulate strain rate effects. Modelling techniques are first validated against existing experimental results and then used to treat the blast induced shock wave propagation and tunnel response in dry and saturated sands. Results show that the tunnel buried in saturated sand responds earlier than that in dry sand. Tunnel deformations decrease with distance from explosive in both sands, as expected. In the vicinity of the explosive, the tunnel buried in saturated sand suffered permanent deformation in both axial and circumferential directions, whereas the tunnel buried in dry sand recovered from most of the axial deformation. Overall, response of the tunnel in saturated sand is more severe for a given blast event and shows the detrimental effect of pore water on the blast response of buried tunnels. The validated modelling techniques developed in this paper can be used to investigate the blast response of tunnels buried in dry and saturated sands.
Resumo:
Enterovirus 71 (EV71) is one of the main etiological agents for Hand, Foot and Mouth Disease (HFMD) and has been shown to be associated with severe clinical manifestation. Currently, there is no antiviral therapeutic for the treatment of HFMD patients owing to a lack of understanding of EV71 pathogenesis. This study seeks to elucidate the transcriptomic changes that result from EV71 infection. Human whole genome microarray was employed to monitor changes in genomic profiles between infected and uninfected cells. The results reveal altered expression of human genes involved in critical pathways including the immune response and the stress response. Together, data from this study provide valuable insights into the host–pathogen interaction between human colorectal cells and EV71.