988 resultados para zincsulfide ZnS sputtering dips AFM EFM KPFM Morphology
Resumo:
The surface and interface morphologies of polystyrene (PS)/poly(methyl methacrylate) (PMMA) thin-film blends and bilayers were investigated by means of atomic force microscopy (AFM) and X-ray photoelectron spectroscopy. Spin-coating a drop of a PS solution directly onto a PMMA bottom layer from a common solvent for both polymers yielded lateral domains that exhibited a well-defined topographical structure. Two common solvents were used in this study. The structure of the films changed progressively as the concentration of the PS solution was varied. The formation of the blend morphology could be explained by the difference in the solubility of the two polymers in the solvent and the dewetting of PS-rich domains from the PMMA-rich phase. Films of the PS/PMMA blend and bilayer were annealed at temperatures above their glass-transition temperatures for up to 70 h. All samples investigated with AFM were covered with PS droplets of various size distributions. Moreover, we investigated the evolution of the annealed PS/PMMA thin-film blend and bilayer and gave a proper explanation for the formation of a relatively complicated interface inside a larger PS droplet.
Resumo:
Polymer concentration and shear and stretch field effects on the surface morphology evolution of three different kinds of polymers (polystyrene (PS), polybutadiene (PB) and polystyrene-b-polybutadiene-b-polystyrene (SBS)) during the spin-coating were investigated by means of atomic force microscopy (AFM). For PS and SBS, continuous film, net-like structure and particle structure were observed at different concentrations. For PB, net-like structures were not observed and continuous films and radial array of droplets emerged. Moreover, we compared surface morphology transitions on different substrate locations from the center to the edge. For PS, net-like structure, broken net-like structure and irregular array of particles were observed. For SBS, net-like structure, periodically orientated string-like structure and broken-line structure appeared. But for PB, flower-like holes in the continuous film, distorted stream-like structure and irregular distributions of droplets emerged. These different transitions of surface morphologies were discussed in terms of individual material property.
Resumo:
Nanostructure and morphology and their development of poly(di-n-hexylsilane) (PDHS) and poly(di-n-butylsilane) (PDBS) during the crystal-mesophase transition are investigated using small angle X-ray scattering (SAXS), wide angle X-ray diffraction and hot-stage atomic force microscopy. At room temperature, PDHS consists of stacks of lamellae separated by mesophase layers, which can be well accounted using an ideal two-phase model. During the crystal-mesophase transition, obvious morphological changes are observed due to the marked changes in main chain conformation and intermolecular distances between crystalline phase and mesophase. In contrast to PDHS, the lamellae in PDBS barely show anisotropy in dimensions at room temperature. The nonperiodic structure and rather small electronic density fluctuation in PDBS lead to the much weak SAXS. The nonperiodic structure is preserved during the crystal-mesophase transition because of the similarity of main chain conformation and intermolecular distances between crystalline phase and mesophase.
Resumo:
The branched crystal morphology of linear polyethylene formed at various temperatures from thin films has been studied by atomic-force microscopy (AFM), transmission electron microscopy (TEM), electron diffraction (ED) pattern and polymer decoration technique. Two types of branched patterns, i.e. dendrite and seaweed patterns, have been visualized. The fractal dimension d(f) = 1.65 of both dendrite and some of seaweed patterns was obtained by using the box-counting method, although most of the seaweed patterns are compact. Selected-area ED patterns indicate that the fold stems tilt about 34.5degrees around the b-axis and polymer decoration patterns show that the chain folding direction and regularity in two (200). regions are quite different from each other. Because of chain tilting, branched crystals show three striking features: 1) the lamella-like branches show two (200) regions with different thickness; 2) the crystals usually bend towards the thin region; 3) the thick region grows faster by developing branches, thus branches usually occur outside the thick region. The branched patterns show a characteristic width w, which gives a linear relationship with the crystallization temperature on a semilogarithmic plot.
Resumo:
In this article, we report on an approach of using an emulsion polymerized polymer in preparing organic-inorganic nanocomposites through a sol-gel technique. By mixing a polymer emulsion with prehydrolyzed tetraethoxysilane transparent poly(butyl methacrylate)/SiO2, nanocomposites were prepared as shown by TEM. AFM, FTIR, and XPS results show that there is a strong interaction between polymer latex particles and the SiO2 network. Comparison of the emulsion method with a traditional solution method shows that nanocomposites can be prepared by both methods, but there is some difference in their morphology and properties.
Resumo:
(abreviated) We aim to study the inner-wind structure (R<250 Rstar) of the well-known red supergiant VY CMa. We analyse high spatial resolution (~0".24x0".13) ALMA Science Verification (SV) data in band 7 in which four thermal emission lines of gaseous sodium chloride (NaCl) are present at high signal-to-noise ratio. For the first time, the NaCl emission in the inner wind region of VY CMa is spatially resolved. The ALMA observations reveal the contribution of up to four different spatial regions. The NaCl emission pattern is different compared to the dust continuum and TiO2 emission already analysed from the ALMA SV data. The emission can be reconciled with an axisymmetric geometry, where the lower density polar/rotation axis has a position angle of ~50 degrees measured from north to east. However, this picture can not capture the full morphological diversity, and discrete mass ejection events need to be invoked to explain localized higher-density regions. The velocity traced by the gaseous NaCl line profiles is significantly lower than the average wind terminal velocity, and much slower than some of the fastest mass ejections, signalling a wide range of characteristic speeds for the mass loss. Gaseous NaCl is detected far beyond the main dust condensation region. Realising the refractory nature of this metal halide, this hints at a chemical process preventing all NaCl from condensing onto dust grains. We show that in the case of the ratio of the surface binding temperature to the grain temperature being ~50, only some 10% of NaCl remains in gaseous form, while for lower values of this ratio thermal desorption efficiently evaporates NaCl. Photodesorption by stellar photons seems not to be a viable explanation for the detection of gaseous NaCl at 220 Rstar from the central star, and instead, we propose shock-induced sputtering driven by localized mass ejection events as alternative.
Resumo:
Neste trabalho foram estudados diferentes filmes finos de ZnO depositados por Rf-Sputtering. Filmes finos de ZnO com diferentes propriedades óticas foram obtidos intencionalmente variando os parâmetros de deposição. De modo a correlacionar as propriedades óticas e estruturais com os parâmetros de deposição, foram utilizadas diferentes técnicas de caracterização avançadas, tais como, fotoluminescência, microscopia de força atómica, difração de raios- X e retrodispersão de Rutherford. Este trabalho centra-se na discussão e análise das bandas de emissão vermelha, verde e azul, comumente observadas em amostras de ZnO e cuja natureza tem sido objeto de grande controvérsia na literatura. A utilização de técnicas de caracterização estrutural revelou-se de extrema importância para correlacionar as propriedades físicas de composição e estrutura com os centros óticos observados nos filmes. Nesta base, foram propostos e discutidos diferentes modelos de recombinação ótica associados à qualidade estrutural dos filmes, considerando modelos de camadas que descrevem a heterogeneidade lateral e em profundidade. Desta análise verificou-se a presença de heterogeneidade estrutural e composicional, que aumenta a complexidade na compreensão da correlação dos parâmetros de deposição com as propriedades óticas dos filmes. Foi discutida a limitação e validade de diferentes modelos tendo em conta a presença da heterogeneidade existente nos filmes estudados. Este trabalho contribui assim para uma melhor compreensão da complexidade de interação dos diferentes defeitos e o seu efeito nas propriedades óticas, nomeadamente o papel dos defeitos de interface, na superfície, nas fronteiras de grão e junto ao substrato.
Resumo:
Abrasion by glass fibers during injection molding of fiber reinforced plastics raises new challenges to the wear performance of the molds. In the last few decades, a large number of PVD and CVD coatings have been developed with the aim of minimizing abrasion problems. In this work, two different coatings were tested in order to increase the wear resistance of the surface of a mold used for glass fiber reinforced plastics: TiAlSiN and CrN/CrCN/DLC. TiAlSiN was deposited as a graded monolayer coating while CrN/CrCN/DLC was a nanostructured coating consisting of three distinct layers. Both coatings were produced by PVD unbalanced magnetron sputtering and were characterized using scanning electron microscopy (SEM) provided with energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), micro hardness (MH) and scratch test analysis. Coating morphology, thickness, roughness, chemical composition and structure, hardness and adhesion to the substrate were investigated. Wear resistance was characterized through industrial tests with coated samples and an uncoated reference sample inserted in a feed channel of a plastic injection mold working with 30 wt.% glass fiber reinforced polypropylene. Results after 45,000 injection cycles indicate that the wear resistance of the mold was increased by a factor of 25 and 58, by the TiAlSiN and CrN/CrCN/DLC coatings, respectively, over the uncoated mold steel.
Resumo:
Swift heavy ion induced changes in microstructure and surface morphology of vapor deposited Fe–Ni based metallic glass thin films have been investigated by using atomic force microscopy, X-ray diffraction and transmission electron microscopy. Ion beam irradiation was carried out at room temperature with 103 MeV Au9+ beam with fluences ranging from 3 1011 to 3 1013 ions/cm2. The atomic force microscopy images were subjected to power spectral density analysis and roughness analysis using an image analysis software. Clusters were found in the image of as-deposited samples, which indicates that the film growth is dominated by the island growth mode. As-deposited films were amorphous as evidenced from X-ray diffraction; however, high resolution transmission electron microscopy measurements revealed a short range atomic order in the samples with crystallites of size around 3 nm embedded in an amorphous matrix. X-ray diffraction pattern of the as-deposited films after irradiation does not show any appreciable changes, indicating that the passage of swift heavy ions stabilizes the short range atomic ordering, or even creates further amorphization. The crystallinity of the as-deposited Fe–Ni based films was improved by thermal annealing, and diffraction results indicated that ion beam irradiation on annealed samples results in grain fragmentation. On bombarding annealed films, the surface roughness of the films decreased initially, then, at higher fluences it increased. The observed change in surface morphology of the irradiated films is attributed to the interplay between ion induced sputtering, volume diffusion and surface diffusion
Resumo:
Ordered nanostructures are observed in the melt and solid state for a series of three peptide/PEG conjugates containing fragments of amyloid beta-peptides. These are conjugated to PEG with (M) over bar (n) = 3 300 g.mol(-1) and a melting temperature T-m = 45-50 degrees C. The morphology at room temperature is examined by AFM and POM. This shows spherulite formation for the weakly fibrillizing KLVFF-PEG sample but fibril formation for FFKLVFF-PEG. The fibrillization tendency of the latter is enhanced by multiple phenylalanine residues. Simultaneous SAXS and WAXS was used to investigate the morphology as a function of temperature. The secondary structure is probed by FTIR.
Resumo:
The purpose of this in vitro study was to test a new methodology to evaluate the effects of 35% hydrogen peroxide agent on the microtopography of sound enamel using an atomic force microscope (AFM). The buccal sound surfaces of three extracted human lower incisors were used, without polishing the surfaces to maintain them with natural morphology. These unpolished surfaces were subjected to bleaching procedure with 35% hydrogen peroxide that consisted of 4 applications of the bleaching agent on enamel surfaces for 10 min each application. Surface images were obtained in a 15 mu m x 15 mu m area using an AFM. The roughness (Ra and RMS) and the power spectral density (PSD) were obtained before and after the bleaching treatment. As results we could inquire that the PSD analyses were very suitable to identifying the morphological changes on the surfaces, while the Ra and RMS parameters were insufficient to represent the morphological alterations promoted by bleaching procedure on enamel. The morphological wavelength in the range of visible light spectrum(380-750 nm) was analyzed, showing a considerable increase of the PSD with the bleaching treatment. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
In this work, we have studied the surface morphology of photo-irradiated poly(p-phenylene vinylene) (PPV) thin films by using atomic force microscopy (AFM). We have analyzed the first-order statistical parameters, the height distribution and the distance between selected peaks. The second-order statistical analysis was introduced calculating the auto-covariance function to determine the correlation length between heights. We have observed that the photo-irradiation process produces a surface topology more homogeneous and isotropic such as a normal surface. In addition, the polymer surface irradiation can be used as a new methodology to obtain materials optically modified. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The fabrication of controlled molecular architectures is essential for organic devices, as is the case of emission of polarized light for the information industry. In this study, we show that optimized conditions can be established to allow layer-by-layer (LbL) films of poly(p-phenylene vinylene) (PPV)+dodecylbenzenesulfonate (DBS) to be obtained with anisotropic properties. Films with five layers and converted at 110 degrees C had a dichroic ratio delta = 2.3 and order parameter r = 34%, as indicated in optical spectroscopy and emission ellipsometry data. This anisotropy was decreased with the number of layers deposited, with delta = 1.0 for a 75-layer LbL PPV + DBS film. The analysis with atomic force microscopy showed the formation of polymer clusters in a random growth process with the normalized height distribution being represented by a Gaussian function. In spite of this randomness in film growth, the self-covariance function pointed to a correlation between clusters, especially for thick films. In summary, the LbL method may be exploited to obtain both anisotropic films with polarized emission and regular, nanostructured surfaces. (c) 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 206-213, 2011
Resumo:
Thin films of mixtures containing carboxymethylcellulose acetate butyrate (CMCAB) and carbohydrate based surfactant, namely, sorbitan monopalmitate (Span 40) or poly(oxyethylene) sorbitan monopalmitate (Tween 40) were spin-coated onto silicon wafers. The effect of surfactant concentration on resulting film morphology and surface toughness Was Studied by atomic force microscopy (AFM). Upon increasing the concentration of Span 40 in the mixture, films became rougher and more heterogeneous, indicating surface enrichment by Span 40 molecules. In the case of mixtures composed by CMCAB and Tween 40, the increase of Tween 40 in the mixture led to smoother and more homogeneous films, indicating compatibility between both components. Differential scanning calorimetry (DSC) revealed that Span 40 and Tween 40 act as plasticizers for CMCAB, leading to dramatic reduction of glass transition temperature of CMCAB, namely, Delta T(g) = -158 degrees C and Delta T(g)=-179 degrees C. respectively. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The concern related to the environmental degradation and to the exhaustion of natural resources has induced the research on biodegradable materials obtained from renewable sources, which involves fundamental properties and general application. In this context, we have fabricated thin films of lignins, which were extracted from sugar cane bagasse via modified organosolv process using ethanol as organic solvent. The films were made using the vacuum thermal evaporation technique (PVD, physical vapor deposition) grown up to 120 nm. The main objective was to explore basic properties such as electrical and surface morphology and the sensing performance of these lignins as transducers. The PVD film growth was monitored via ultraviolet-visible (UV-vis) absorption spectroscopy and quartz crystal microbalance, revealing a linear relationship between absorbance and film thickness. The 120 nm lignin PVD film morphology presented small aggregates spread all over the film surface on the nanometer scale (atomic force microscopy, AFM) and homogeneous on the micrometer scale (optical microscopy). The PVD films were deposited onto Au interdigitated electrode (IDE) for both electrical characterization and sensing experiments. In the case of electrical characterization, current versus voltage (I vs V) dc measurements were carried out for the Au IDE coated with 120 nm lignin PVD film, leading to a conductivity of 3.6 x 10(-10) S/m. Using impedance spectroscopy, also for the Au IDE coated with the 120 nm lignin PVD film, dielectric constant of 8.0, tan delta of 3.9 x 10(-3)) and conductivity of 1.75 x 10(-9) S/m were calculated at 1 kHz. As a proof-of-principle, the application of these lignins as transducers in sensing devices was monitored by both impedance spectroscopy (capacitance vs frequency) and I versus time dc measurements toward aniline vapor (saturated atmosphere). The electrical responses showed that the sensing units are sensible to aniline vapor with the process being reversible. AFM images conducted directly onto the sensing units (Au IDE coated with 120 nm lignin PVD film) before and after the sensing experiments showed a decrease in the PVD film roughness from 5.8 to 3.2 nm after exposing to aniline.