952 resultados para very low-density lipoprotein
Resumo:
BACKGROUND Oxidized lipoproteins and antioxidized low-density lipoprotein (anti-oxLDL) antibodies (Abs) have been detected in plasma in response to blood pressure (BP) elevation, suggesting the participation of the adaptive immune system. Therefore, treatment of hypertension may act on the immune response by decreasing oxidation stimuli. However, this issue has not been addressed. Thus, we have here analyzed anti-oxLDL Abs in untreated (naive) hypertensive patients shortly after initiation of anti hypertensive therapeutic regimens. METHODS Titers of anti-oxLDL Abs were measured in subjects with recently diagnosed hypertension on stage 1 (n = 94), in primary prevention of coronary disease, with no other risk factors, and naive of anti hypertensive medication at entry. Subjects were randomly assigned to receive perindopril, hydrochlorothiazide (HCTZ), or indapamide (INDA) for 12 weeks, with additional perindopril if necessary to achieve BP control. Abs against copper-oxidized LDL were measured by enzyme-linked immunosorbent assay. RESULTS Twelve-week antihypertensive treatment reduced both office-based and 24-h ambulatory BP measurements (P < 0.0005). The decrease in BP was accompanied by reduction in thiobarbituric acid-reactive substances (TBARS) (P < 0.05), increase in anti-oxLDL Ab titers (P < 0.005), and improvement in flow-mediated dilation (FMD) (P < 0.0005), independently of treatment. Although BP was reduced, we observed favorable changes in anti-oxLDL titers and FMD. CONCLUSIONS We observed that anti-oxLDL Ab titers increase after antihypertensive therapy in primary prevention when achieving BP targets. Our results are in agreement with the concept that propensity to oxidation is increased by essential hypertension and anti-oxLDL Abs may be protective and potential biomarkers for the follow-up of hypertension treatment.
Resumo:
Low-density lipoprotein (LDL) is known as `bad` cholesterol. If too much LDL circulates in the blood it can be retained in the walls of the arteries, causing atherosclerosis. In this paper we showed an alternative method to quantify LDL using the europium tetracycline (EuTc) indicator. The optical properties of the EuTc complex were investigated in aqueous solutions containing LDL. An enhancement was observed of the europium luminescence in the solutions with LDL compared those without the lipoprotein. A method to quantify the amount of LDL in a sample, based on EuTc enhanced luminescence, is proposed. The enhancement mechanism is also discussed. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Orange juice (OJ) is regularly consumed worldwide, but its effects on plasma lipids have rarely been explored. This study hypothesized that consumption of OJ concentrate would improve lipid levels and lipid metabolism, which are important in high-density lipoprotein (HDL) function in normolipidemic (NC) and hypercholesterolemic (HCH) subjects. Fourteen HCH and 31 NC adults consumed 750 mL/day OJ concentrate (1:6 OJ/water) for 60 days. Eight control subjects did not consume OJ for 60 days. Plasma was collected before and on the last clay for biochemical analysis and an in vitro as
Resumo:
To study the effects of diclofenac, a nonselective nonsteroidal anti-inflammatory drug (NSAID), on lipid profile, oxidized low-density-lipoprotein (Ox-LDL), serum antioxidant defenses and markers of oxidative stress, male Wistar rats were divided into two groups (n = 10): (C) receiving intramuscularly a single daily dose of saline (NaCl 0.9%), and (AI) receiving intramuscularly a single daily dose of 10 mg/kg diclofenac sodium (C14H10C12NNaO2). After 28 days diclofenac-treated rats had lower Ox-LDL, apoprotein B (apo-B), apo-B/LDL-cholesterol and lipid hydroperoxide than C. Total antioxidant substances and superoxide dismutase were increased in diclofenac-treated rats, while no significant changes were observed in catalase, glutathione peroxidase and nitric oxide. A perincubation test done to examine the possibility of mechanism-based activation showed that diclofenac had no effect on maximal superoxide dismutase velocity, but significantly reduced the Michaelis-Menten (K-M) constant, indicating that diclofenac induced SOD activation increasing substrate linkage affinity to the enzyme-catalytic site. In conclusion, diclofenac had beneficial effects decreasing Ox-LDL and improving antioxidant defense. It appears that the application of this agent may be feasible and beneficial for serum antioxidant protection, which certainly would bring new insights on dyslipidemia control. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
BACKGROUND AND GOAL: Patients infected with hepatitis C virus (HCV) with elevated low-density lipoprotein (LDL) levels achieve higher sustained virologic response (SVR) rates after peginterferon (PegIFN)/ribavirin treatment versus patients with lower LDL. Our aim was to determine whether SVR rates in patients with low/elevated LDL can be improved by dose intensification. STUDY: In PROGRESS, genotype 1 patients with baseline HCV RNA≥400,000 IU/mL and body weight ≥85 kg were randomized to 48 weeks of 180 μg/wk PegIFN α-2a (40 kDa) plus ribavirin (A: 1200 mg/d; B: 1400/1600 mg/d) or 12 weeks of 360 μg/wk PegIFN α-2a followed by 36 weeks of 180 μg/wk, plus ribavirin (C: 1200 mg/d; D: 1400/1600 mg/d). This retrospective analysis assessed SVR rates among patients with low (<100 mg/dL) or elevated (≥100 mg/dL) LDL. Patients with high LDL (n=256) had higher baseline HCV RNA (5.86×10 IU/mL) versus patients with low LDL (n=262; 4.02×10 IU/mL; P=0.0003). RESULTS: Multiple logistic regression analysis identified a significant interaction between PegIFN α-2a dose and LDL levels on SVR (P=0.0193). The only treatment-related SVR predictor in the nested multiple logistic regression was PegIFN α-2a dose among patients with elevated LDL (P=0.0074); therefore, data from the standard (A+B) and induction (C+D) dose arms were pooled. Among patients with low LDL, SVR rates were 40% and 35% in the standard and induction-dose groups, respectively; SVR rates in patients with high LDL were 44% and 60% (P=0.014), respectively. CONCLUSIONS: Intensified dosing of PegIFN α-2a increases SVR rates in patients with elevated LDL even with the difficult-to-cure characteristics of genotype 1, high baseline viral load, and high body weight. Copyright © 2013 by Lippincott Williams & Wilkins.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Hepatitis C virus (HCV) envelope protein 2 (E2) is involved in viral binding to host cells. The aim of this work was to produce recombinant E2B and E2Y HCV proteins in Escherichia coli and Pichia pastoris, respectively, and to study their interactions with low-density lipoprotein receptor (LDLr) and CD81 in human umbilical vein endothelial cells (HUVEC) and the ECV304 bladder carcinoma cell line. To investigate the effects of human LDL and differences in protein structure (glycosylated or not) on binding efficiency, the recombinant proteins were either associated or not associated with lipoproteins before being assayed. The immunoreactivity of the recombinant proteins was analysed using pooled serum samples that were either positive or negative for hepatitis C. The cells were immunophenotyped by LDLr and CD81 using flow cytometry. Binding and binding inhibition assays were performed in the presence of LDL, foetal bovine serum (FCS) and specific antibodies. The results revealed that binding was reduced in the absence of FCS, but that the addition of human LDL rescued and increased binding capacity. In HUVEC cells, the use of antibodies to block LDLr led to a significant reduction in the binding of E2B and E2Y. CD81 antibodies did not affect E2B and E2Y binding. In ECV304 cells, blocking LDLr and CD81 produced similar effects, but they were not as marked as those that were observed in HUVEC cells. In conclusion, recombinant HCV E2 is dependent on LDL for its ability to bind to LDLr in HUVEC and ECV304 cells. These findings are relevant because E2 acts to anchor HCV to host cells; therefore, high blood levels of LDL could enhance viral infectivity in chronic hepatitis C patients.
Resumo:
The influence of antimalarials on lipids in systemic lupus erythematosus (SLE) has been identified in several studies but not in many prospective cohorts. The aim of this study was to longitudinally determine the effect of antimalarials on the lipoprotein profile in SLE. Patients and methods: Fasting total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL) and low-density lipoprotein cholesterol (LDL) plasma levels were determined at entry and after 3 months of hydroxychloroquine (HCQ) treatment in a longitudinal evaluation of 24 patients with SLE. Results: a significant decrease in TC (198 +/- 33.7 vs. 183 +/- 30.3 mg/dl, p = 0.023) and LDL levels (117 +/- 31.3 vs. 101 +/- 26.2 mg/dl, p = 0.023) were detected after the 3 months of HCQ therapy. The reduction of 7.6% in TC (p = 0.055) and 13.7% in LDL levels (p = 0.036) determined a significant decrease in the frequency of dyslipidemia (26% vs. 12.5%, p = 0.013) after HCQ therapy. Conclusion: This longitudinal study demonstrated the beneficial effect of antimalarials on lipids in SLE since this therapy induced a reduction of atherogenic lipoproteins. Lupus (2012) 21, 1178-1182.
Resumo:
Modifications in low-density lipoprotein (LDL) have emerged as a major pathogenic factor of atherosclerosis, which is the main cause of morbidity and mortality in the western world. Measurements of the heat diffusivity of human LDL solutions in their native and in vitro oxidized states are presented by using the Z-Scan (ZS) technique. Other complementary techniques were used to obtain the physical parameters necessary to interpret the optical results, e. g., pycnometry, refractometry, calorimetry, and spectrophotometry, and to understand the oxidation phase of LDL particles. To determine the sample's thermal diffusivity using the thermal lens model, an iterative one-parameter fitting method is proposed which takes into account several characteristic ZS time-dependent and the position-dependent transmittance measurements. Results show that the thermal diffusivity increases as a function of the LDL oxidation degree, which can be explained by the increase of the hydroperoxides production due to the oxidation process. The oxidation products go from one LDL to another, disseminating the oxidation process and caring the heat across the sample. This phenomenon leads to a quick thermal homogenization of the sample, avoiding the formation of the thermal lens in highly oxidized LDL solutions. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.10.105003]
Resumo:
Low-density lipoprotein (LDL) receptors are overexpressed in most neoplastic cell lines and provide a mechanism for the internalization and concentration of drug-laden nanoemulsions that bind to these receptors. The aim of the present study was to determine whether the administration of standard chemotherapeutic schemes can alter the expression of LDL and LDL receptor-related protein 1 (LRP-1) receptors in breast carcinoma. Fragments of tumoral and normal breast tissue from 16 consecutive volunteer women with breast cancer in stage II or III were obtained from biopsies before the beginning of neoadjuvant chemotherapy and after chemotherapy, from fragments excised during mastectomy. Tissues were analyzed by immunohistochemistry for both receptors. Because complete response to treatment was achieved in 4 patients, only the tumors from 12 were analyzed. Before chemotherapy, there was overexpression of LDL receptor in the tumoral tissue compared to normal breast tissue in 8 of these patients. LRP-1 receptor overexpression was observed in tumors of 4 patients. After chemotherapy, expression of both receptors decreased in the tumors of 6 patients, increased in 4 and was unchanged in 2. Nonetheless, even when chemotherapy reduced receptors expression, the expression was still above normal. The fact that chemotherapy does not impair LDL receptors expression supports the use of drug carrier systems that target neoplastic cells by the LDL receptor endocytic pathway in patients on conventional chemotherapy.
Resumo:
Low density lipoprotein (LDL) wird in der Arterienwand enzymatisch gespalten. Das Produkt, E-LDL, enthält neben freiem Cholesterol unveresterte Fettsäuren und induziert die Produktion von Interleukin 8 (IL-8) in Endothelzellen. Der Transkriptionsfaktor nuclear factor-kappaB (NF-κB), der das IL-8-Gen normalerweise reguliert, wurde durch E-LDL jedoch nicht aktiviert: Das veränderte Lipoprotein bewirkte im Gegenteil eine Hemmung von NF-κB vor dessen Translokation in den Zellkern. In E-LDL enthaltene freie Fettsäuren waren für die Hemmung verantwortlich. Dagegen aktivierte E-LDL den Transkriptionsfaktor AP-1, wie durch Phosphorylierung von c-jun gezeigt wurde. IL-8 lockt polymorphkernige Granulozyten (PMN) an, die jedoch in der frühen atherosklerotischen Läsion nicht vorkommen. Die vorliegende Arbeit bietet eine mögliche Erklärung für ihre Abwesenheit: PMN zeigten sich wesentlich empfindlicher gegenüber der Toxizität von E-LDL als Makrophagen. Es ist denkbar, daß sie in die Läsion zwar einwandern, nach ihrem raschen Tod dort jedoch nicht mehr detektiert werden können. E-LDL aktivierte PMN, wie durch Superoxidbildung und Peroxidasefreisetzung gezeigt wurde. Sowohl Aktivierung als auch Toxizität wurden von den in E-LDL enthaltenen freien Fettsäuren verursacht, die eine direkte Schädigung der Zellmembran bewirkten. Die E-LDL-bedingte Freisetzung proinflammatorischer Substanzen aus PMN könnte ein Grund dafür sein, daß die Depletion dieser Zellen die Läsionsentwicklung hemmt.
Resumo:
LRP4, member of the LDLR family, is a multifunctional membrane-bound receptor that is expressed in various tissues. The expression of LRP4 by osteoblasts, its novel interaction with Wnt-signaling inhibitors Dkk1 and SOST, and the lower levels of activated beta-catenin in different bone locations described here, adds another player to the long list of established factors that modulate canonical Wnt-signaling in bone. By demonstrating that in addition to Wise, LRP4 is able to interact with two additional important modulators of Wnt- and BMP-signaling, our perspective of the complexity of the integration of BMP and Wnt-signaling pathways on the osteoblast surface has expanded further. Nevertheless the recently described association of both the SOST and LRP4 genes with BMD in humans, together with our findings suggest that LRP4 plays a physiologically important role in the skeletal development and bone metabolism not only in rodents, but in humans as well. The efficiency with which LRP4 binds both SOST and Dkk1, presumably at the osteoblastic surface, LRP4 may act as a sink and competes with LRP5/6 for the binding of these Wnt antagonists, which then are no longer available for suppression of the signal through the LRP5/6 axis. rnApoE, a 299 amino acid glycoprotein, is a crucial regulator in the uptake of triglyceride, phospholipids, cholesteryl esters, and cholesterol into cells. ApoE has been linked to osteoporosis, and such a role is further strengthened by the present of a high bone mass phenotype in ApoE null mice. Until recently, the effects of respective ApoE isoforms E2, E3, and E4, and their impact on bone metabolism, have been unclear. Here we report that respective human ApoE knockin mice display diverse effects on bone metabolism. ApoE2 mice show decreased trabecular bone volume per total volume in femoral bone and lumbar spine in comparison to ApoE3 and E4 animals. In this context, urinary bone resorption marker DPD is increased in these animals, which is accompanied by a low ratio of osteoclastogenesis markers OPG/RANKL. Interestingly, serum bone formation markers ALP and OCN are diminished in ApoE4 mice. In contrast to this finding, ApoE2 mice show the lowest bone formation of all groups in vivo. These findings cannot be explained by the low receptor-affinity of ApoE2 and subsequent decreased uptake of triglyceride-rich lipoproteins by osteoblasts, resulting in elevated levels of undercarboxylated osteocalcin. Thus, other crucial pathways relevant for bone metabolism, e. g. Wnt/beta-catenin-signaling pathways, must be, compared to the ApoE3/4 isoforms, more affected by the ApoE2 isoform.
Resumo:
Oxidised low density lipoproteins (oxLDL) are key players in the development of atherosclerotic cardiovascular diseases. Since there are similarities between the pathogenesis of preeclampsia and atherosclerosis we hypothesised an increased accumulation of oxLDL at the materno-foetal and foeto-foetal interface within the placental tissue of preeclamptic women compared to women with normotensive pregnancies (controls). Moreover, we analysed maternal and foetal serum lipid parameters.