928 resultados para syntactical complexity
Resumo:
This paper critically examines a number of issues relating to the measurement of tax complexity. It starts with an analysis of the concept of tax complexity, distinguishing tax design complexity and operational complexity. It considers the consequences/costs of complexity, and then examines the rationale for measuring complexity. Finally it applies the analysis to an examination of an index of complexity developed by the UK Office of Tax Simplification (OTS).
Resumo:
OBJECTIVES: To document biopsychosocial profiles of patients with rheumatoid arthritis (RA) by means of the INTERMED and to correlate the results with conventional methods of disease assessment and health care utilization. METHODS: Patients with RA (n = 75) were evaluated with the INTERMED, an instrument for assessing case complexity and care needs. Based on their INTERMED scores, patients were compared with regard to severity of illness, functional status, and health care utilization. RESULTS: In cluster analysis, a 2-cluster solution emerged, with about half of the patients characterized as complex. Complex patients scoring especially high in the psychosocial domain of the INTERMED were disabled significantly more often and took more psychotropic drugs. Although the 2 patient groups did not differ in severity of illness and functional status, complex patients rated their illness as more severe on subjective measures and on most items of the Medical Outcomes Study Short Form 36. Complex patients showed increased health care utilization despite a similar biologic profile. CONCLUSIONS: The INTERMED identified complex patients with increased health care utilization, provided meaningful and comprehensive patient information, and proved to be easy to implement and advantageous compared with conventional methods of disease assessment. Intervention studies will have to demonstrate whether management strategies based on INTERMED profiles can improve treatment response and outcome of complex patients.
Resumo:
Eusociality is taxonomically rare, yet associated with great ecological success. Surprisingly, studies of environmental conditions favouring eusociality are often contradictory. Harsh conditions associated with increasing altitude and latitude seem to favour increased sociality in bumblebees and ants, but the reverse pattern is found in halictid bees and polistine wasps. Here, we compare the life histories and distributions of populations of 176 species of Hymenoptera from the Swiss Alps. We show that differences in altitudinal distributions and development times among social forms can explain these contrasting patterns: highly social taxa develop more quickly than intermediate social taxa, and are thus able to complete the reproductive cycle in shorter seasons at higher elevations. This dual impact of altitude and development time on sociality illustrates that ecological constraints can elicit dynamic shifts in behaviour, and helps explain the complex distribution of sociality across ecological gradients.
Resumo:
Human perception of bitterness displays pronounced interindividual variation. This phenotypic variation is mirrored by equally pronounced genetic variation in the family of bitter taste receptor genes. To better understand the effects of common genetic variations on human bitter taste perception, we conducted a genome-wide association study on a discovery panel of 504 subjects and a validation panel of 104 subjects from the general population of São Paulo in Brazil. Correction for general taste-sensitivity allowed us to identify a SNP in the cluster of bitter taste receptors on chr12 (10.88- 11.24 Mb, build 36.1) significantly associated (best SNP: rs2708377, P = 5.31 × 10(-13), r(2) = 8.9%, β = -0.12, s.e. = 0.016) with the perceived bitterness of caffeine. This association overlaps with-but is statistically distinct from-the previously identified SNP rs10772420 influencing the perception of quinine bitterness that falls in the same bitter taste cluster. We replicated this association to quinine perception (P = 4.97 × 10(-37), r(2) = 23.2%, β = 0.25, s.e. = 0.020) and additionally found the effect of this genetic locus to be concentration specific with a strong impact on the perception of low, but no impact on the perception of high concentrations of quinine. Our study, thus, furthers our understanding of the complex genetic architecture of bitter taste perception.
Resumo:
The study tested three analytic tools applied in SLA research (T-unit, AS-unit and Idea-unit) against FL learner monologic oral data. The objective was to analyse their effectiveness for the assessment of complexity of learners' academic production in English. The data were learners' individual productions gathered during the implementation of a CLIL teaching sequence on Natural Sciences in a Catalan state secondary school. The analysis showed that only AS-unit was easily applicable and highly effective in segmenting the data and taking complexity measures
Resumo:
Species distribution models (SDMs) are widely used to explain and predict species ranges and environmental niches. They are most commonly constructed by inferring species' occurrence-environment relationships using statistical and machine-learning methods. The variety of methods that can be used to construct SDMs (e.g. generalized linear/additive models, tree-based models, maximum entropy, etc.), and the variety of ways that such models can be implemented, permits substantial flexibility in SDM complexity. Building models with an appropriate amount of complexity for the study objectives is critical for robust inference. We characterize complexity as the shape of the inferred occurrence-environment relationships and the number of parameters used to describe them, and search for insights into whether additional complexity is informative or superfluous. By building 'under fit' models, having insufficient flexibility to describe observed occurrence-environment relationships, we risk misunderstanding the factors shaping species distributions. By building 'over fit' models, with excessive flexibility, we risk inadvertently ascribing pattern to noise or building opaque models. However, model selection can be challenging, especially when comparing models constructed under different modeling approaches. Here we argue for a more pragmatic approach: researchers should constrain the complexity of their models based on study objective, attributes of the data, and an understanding of how these interact with the underlying biological processes. We discuss guidelines for balancing under fitting with over fitting and consequently how complexity affects decisions made during model building. Although some generalities are possible, our discussion reflects differences in opinions that favor simpler versus more complex models. We conclude that combining insights from both simple and complex SDM building approaches best advances our knowledge of current and future species ranges.
Resumo:
We give the first systematic study of strong isomorphism reductions, a notion of reduction more appropriate than polynomial time reduction when, for example, comparing the computational complexity of the isomorphim problem for different classes of structures. We show that the partial ordering of its degrees is quite rich. We analyze its relationship to a further type of reduction between classes of structures based on purely comparing for every n the number of nonisomorphic structures of cardinality at most n in both classes. Furthermore, in a more general setting we address the question of the existence of a maximal element in the partial ordering of the degrees.
Resumo:
Projecte de recerca elaborat a partir d’una estada a la Università degli studi di Siena, Italy , entre 2007 i 2009. El projecte ha consistit en un estudi de la formalització lògica del raonament en presència de vaguetat amb els mètodes de la Lògica Algebraica i de la Teoria de la Prova. S'ha treballat fonamental en quatre direccions complementà ries. En primer lloc, s'ha proposat un nou plantejament, més abstracte que el paradigma dominant fins ara, per l'estudi dels sistemes de lògica borrosa. Fins ara en l'estudi d'aquests sistemes l'atenció havia recaigut essencialment en l'obtenció de semà ntiques basades en tnormes contÃnues (o almenys contÃnues per l'esquerra). En primer nivell de major abstracció hem estudiat les propietats de completesa de les lògiques borroses (tant proposicionals com de primer ordre) respecte de semà ntiques definides sobre qualsevol cadena de valors de veritat, no necessà riament només sobre l'interval unitat dels nombres reals. A continuació, en un nivell encara més abstracte, s’ha pres l'anomenada jerarquia de Leibniz de la Lògica Algebraica Abstracta que classifica tots els sistemes lògics amb un bon comportament algebraic i s'ha expandit a una nova jerarquia (que anomenem implicacional) que permet definir noves classes de lògiques borroses que contenen quasi totes les conegudes fins ara. En segon lloc, s’ha continuat una lÃnia d'investigació iniciada els darrers anys consistent en l'estudi de la veritat parcial com a noció sintà ctica (és a dir, com a constants de veritat explÃcites en els sistemes de prova de les lògiques borroses). Per primer cop, s’ha considerat la semà ntica racional per les lògiques proposicionals i la semà ntica real i racional per les lògiques de primer ordre expandides amb constants. En tercer lloc, s’ha tractat el problema més fonamental del significat i la utilitat de les lògiques borroses com a modelitzadores de (part de) els fenòmens de la vaguetat en un darrer article de carà cter més filosòfic i divulgatiu, i en un altre més tècnic en què defensem la necessitat i presentem l'estat de l'art de l'estudi de les estructures algèbriques associades a les lògiques borroses. Finalment, s’ha dedicat la darrera part del projecte a l'estudi de la complexitat aritmètica de les lògiques borroses de primer ordre.
Resumo:
Clonally complex infections by Mycobacterium tuberculosis are progressively more accepted. Studies of their dimension in epidemiological scenarios where the infective pressure is not high are scarce. Our study systematically searched for clonally complex infections (mixed infections by more than one strain and simultaneous presence of clonal variants) by applying mycobacterial interspersed repetitive-unit (MIRU)-variable-number tandem-repeat (VNTR) analysis to M. tuberculosis isolates from two population-based samples of respiratory (703 cases) and respiratory-extrapulmonary (R+E) tuberculosis (TB) cases (71 cases) in a context of moderate TB incidence. Clonally complex infections were found in 11 (1.6%) of the respiratory TB cases and in 10 (14.1%) of those with R+E TB. Among the 21 cases with clonally complex TB, 9 were infected by 2 independent strains and the remaining 12 showed the simultaneous presence of 2 to 3 clonal variants. For the 10 R+E TB cases with clonally complex infections, compartmentalization (different compositions of strains/clonal variants in independent infected sites) was found in 9 of them. All the strains/clonal variants were also genotyped by IS6110-based restriction fragment length polymorphism analysis, which split two MIRU-defined clonal variants, although in general, it showed a lower discriminatory power to identify the clonal heterogeneity revealed by MIRU-VNTR analysis. The comparative analysis of IS6110 insertion sites between coinfecting clonal variants showed differences in the genes coding for a cutinase, a PPE family protein, and two conserved hypothetical proteins. Diagnostic delay, existence of previous TB, risk for overexposure, and clustered/orphan status of the involved strains were analyzed to propose possible explanations for the cases with clonally complex infections. Our study characterizes in detail all the clonally complex infections by M. tuberculosis found in a systematic survey and contributes to the characterization that these phenomena can be found to an extent higher than expected, even in an unselected population-based sample lacking high infective pressure.
Resumo:
Shape complexity has recently received attention from different fields, such as computer vision and psychology. In this paper, integral geometry and information theory tools are applied to quantify the shape complexity from two different perspectives: from the inside of the object, we evaluate its degree of structure or correlation between its surfaces (inner complexity), and from the outside, we compute its degree of interaction with the circumscribing sphere (outer complexity). Our shape complexity measures are based on the following two facts: uniformly distributed global lines crossing an object define a continuous information channel and the continuous mutual information of this channel is independent of the object discretisation and invariant to translations, rotations, and changes of scale. The measures introduced in this paper can be potentially used as shape descriptors for object recognition, image retrieval, object localisation, tumour analysis, and protein docking, among others