900 resultados para static nodes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research study investigates the application of phase shifter-based smart antenna system in distributed beamforming. It examines the way to optimise the transmit power by jointly maximising the directivity of the array antennas and the weight vector for distributed beamforming. This research study concludes that maximising directivity can lead to better transmit power minimisation compared to maximising field intensity. This study also concludes that signal to noise power ratio maximisation subject to a power constraint and power minimisation subject to a signal to noise power ratio constraint yield the same results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose To test the effectiveness of static and dynamic orthoses using them as an exclusive treatment for proximal interphalangeal (PIP) joint flexion contracture compared with other hand therapy conservative treatments described in the literature. Methods 60 patients who used orthoses were compared with a control group that received other hand therapy treatments. Clinical assessments were measured before the experiment and 3 months after and included active PIP joint extension and function. Results A significant improvement in the extension active range of motion at the PIP joint in the second measurement was found in both groups, but it was significantly greater in the experimental group. Improvement in function (Disabilities of the Arm, Shoulder, and Hand score) between the first and second assessment was similar in the control and experimental groups. Conclusions Using night progressive static and daily dynamic orthoses as an exclusive treatment during the proliferative phase led to significant improvements in the PIP joint active extension, but the improvement did not correlate with increased function as perceived by the patient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the advent of functional neuroimaging techniques, in particular functional magnetic resonance imaging (fMRI), we have gained greater insight into the neural correlates of visuospatial function. However, it may not always be easy to identify the cerebral regions most specifically associated with performance on a given task. One approach is to examine the quantitative relationships between regional activation and behavioral performance measures. In the present study, we investigated the functional neuroanatomy of two different visuospatial processing tasks, judgement of line orientation and mental rotation. Twenty-four normal participants were scanned with fMRI using blocked periodic designs for experimental task presentation. Accuracy and reaction time (RT) to each trial of both activation and baseline conditions in each experiment was recorded. Both experiments activated dorsal and ventral visual cortical areas as well as dorsolateral prefrontal cortex. More regionally specific associations with task performance were identified by estimating the association between (sinusoidal) power of functional response and mean RT to the activation condition; a permutation test based on spatial statistics was used for inference. There was significant behavioral-physiological association in right ventral extrastriate cortex for the line orientation task and in bilateral (predominantly right) superior parietal lobule for the mental rotation task. Comparable associations were not found between power of response and RT to the baseline conditions of the tasks. These data suggest that one region in a neurocognitive network may be most strongly associated with behavioral performance and this may be regarded as the computationally least efficient or rate-limiting node of the network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Context There are differences in definitions of end plate lesions (EPLs), often referred to as Schmorl’s nodes, that may, to some extent, account for the large range of reported prevalence (3.8 to 76%). Purpose To develop a technique to measure the size, prevalence and location of EPLs in a consistent manner. Study Design/Setting This study proposed a method using a detection algorithm which was applied to five adolescent females (average age 15.1 years, range 13.0 to 19.2 years) with idiopathic scoliosis (average major Cobb angle 60°, range 55 to 67°). Methods Existing low-dose, computed tomography scans were segmented semi-automatically to extract 3D morphology of each vertebral endplate. Any remaining attachments to the posterior elements of adjacent vertebrae or endplates were then manually sectioned. An automatic algorithm was used to determine the presence and position of EPLs. Results EPLs were identified in 15 of the 170 (8.8%) endplates analysed with an average depth of 3.1mm. 11/15 of the EPLs were seen in the lumbar spine. The algorithm was found to be most sensitive to changes in the minimum EPL gradient at the edges of the EPL. Conclusions This study describes an imaging analysis technique for consistent measurement of the prevalence, location and size of EPLs. The technique can be used to analyse large populations without observer errors in EPL definitions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION There is a large range in the reported prevalence of end plate lesions (EPLs), sometimes referred to as Schmorl's nodes in the general population (3.8-76%). One possible reason for this large range is the differences in definitions used by authors. Previous research has suggested that EPLs may potentially be a primary disturbance of growth plates that leads to the onset of scoliosis. The aim of this study was to develop a technique to measure the size, prevalence and location of EPLs on Computed Tomography (CT) images of scoliosis patients in a consistent manner. METHODS A detection algorithm was developed and applied to measure EPLs for five adolescent females with idiopathic scoliosis (average age 15.1 years, average major Cobb 60°). In this algorithm, the EPL definition was based on the lesion depth, the distance from the edge of the vertebral body and the gradient of the lesion edge. Existing low-dose, CT scans of the patients' spines were segmented semi-automatically to extract 3D vertebral endplate morphology. Manual sectioning of any attachments between posterior elements of adjacent vertebrae and, if necessary, endplates was carried out before the automatic algorithm was used to determine the presence and position of EPLs. RESULTS EPLs were identified in 15 of the 170 (8.8%) endplates analysed with an average depth of 3.1mm. 73% of the EPLs were seen in the lumbar spines (11/15). A sensitivity study demonstrated that the algorithm was most sensitive to changes in the minimum gradient required at the lesion edge. CONCLUSION An imaging analysis technique for consistent measurement of the prevalence, location and size of EPLs on CT images has been developed. Although the technique was tested on scoliosis patients, it can be used to analyse other populations without observer errors in EPL definitions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background To date bone-anchored prostheses are used to alleviate the concerns caused by socket suspended prostheses and to improve the quality of life of transfemoral amputees (TFA). Currently, two implants are commercially available (i.e., OPRA (Integrum AB, Sweden), ILP (Orthodynamics GmbH, Germany)). [1-17]The success of the OPRA technique is codetermined by the rehabilitation program. TFA fitted with an osseointegrated implant perform progressive mechanical loading (i.e. static load bearing exercises (LBE)) to facilitate bone remodelling around the implant.[18, 19] Aim This study investigated the trustworthiness of monitoring the load prescribed (LP) during experimental static LBEs using the vertical force provided by a mechanical bathroom scale that is considered a surrogate of the actual load applied. Method Eleven unilateral TFAs fitted with an OPRA implant performed five trials in four loading conditions. The forces and moments on the three axes of the implant were measured directly with an instrumented pylon including a six-channel transducer. The “axial” and “vectorial” comparisons corresponding to the difference between the force applied on the long axis of the fixation and LP as well as the resultant of the three components of the load applied and LP, respectively were analysed Results For each loading condition, Wilcoxon One-Sample Signed Rank Tests were used to investigate if significant differences (p<0.05) could be demonstrated between the force applied on the long axis and LP, and between the resultant of the force and LP. The results demonstrated that the raw axial and vectorial differences were significantly different from zero in all conditions (p<0.05), except for the vectorial difference for the 40 kg loading condition (p=0.182). The raw axial difference was negative for all the participants in every loading condition, except for TFA03 in the 10 kg condition (11.17 N). Discussion & Conclusion This study showed a significant lack of axial compliance. The load applied on the long axis was significantly smaller than LP in every loading condition. This led to a systematic underloading of the long axis of the implant during the proposed experimental LBE. Monitoring the vertical force might be only partially reflective of the actual load applied, particularly on the long axis of the implant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an approximate three-dimensional elasticity solution for an infinitely long, cross-ply laminated circular cylindrical shell panel with simply supported boundary conditions, subjected to an arbitrary discontinuous transverse loading. The solution is based on the principal assumption that the ratio of the thickness of the lamina to its middle surface radius is negligible compared to unity. The validity of this assumption and the range of application of this approximate solution have been established through a comparison with an exact solution. Results of classical and first-order shear deformation shell theories have been compared with the results of the present solution to bring out the accuracy of these theories. It is also shown that for very shallow shell panels the definition of a thin shell should be based on the ratio of thickness to chord width rather than the ratio of thickness to mean radius.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of a more realistic tetrakaidecahedral structure of foam bubbles, a network model of static foam drainage has been developed. The model considers the foam to be made up of films and Plateau borders. The films drain into the adjacent Plateau borders, which in turn form a network through which the liquid moves from the foam to the liquid pool. From the structure, a unit flow cell was found, which constitutes the foam when stacked together both horizontally and vertically. Symmetry in the unit flow cell indicates that the flow analysis of a part of it can be employed to obtain the drainage for the whole foam. Material balance equations have been written for each segment of this subsection, ensuring connectivity, and solved with the appropriate boundary and initial conditions. The calculated rates of drainage, when compared with the available experimental results, indicate that the model predicts the experimental results well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combining the philosophies of nonlinear model predictive control and approximate dynamic programming, a new suboptimal control design technique is presented in this paper, named as model predictive static programming (MPSP), which is applicable for finite-horizon nonlinear problems with terminal constraints. This technique is computationally efficient, and hence, can possibly be implemented online. The effectiveness of the proposed method is demonstrated by designing an ascent phase guidance scheme for a ballistic missile propelled by solid motors. A comparison study with a conventional gradient method shows that the MPSP solution is quite close to the optimal solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films are developed by dispersing carbon black nanoparticles and carbon nanotubes (CNTs) in an epoxy polymer. The films show a large variation in electrical resistance when subjected to quasi-static and dynamic mechanical loading. This phenomenon is attributed to the change in the band-gap of the CNTs due to the applied strain, and also to the change in the volume fraction of the constituent phases in the percolation network. Under quasi-static loading, the films show a nonlinear response. This nonlinearity in the response of the films is primarily attributed to the pre-yield softening of the epoxy polymer. The electrical resistance of the films is found to be strongly dependent on the magnitude and frequency of the applied dynamic strain, induced by a piezoelectric substrate. Interestingly, the resistance variation is found to be a linear function of frequency and dynamic strain. Samples with a small concentration of just 0.57% of CNT show a sensitivity as high as 2.5% MPa-1 for static mechanical loading. A mathematical model based on Bruggeman's effective medium theory is developed to better understand the experimental results. Dynamic mechanical loading experiments reveal a sensitivity as high as 0.007% Hz(-1) at a constant small-amplitude vibration and up to 0.13%/mu-strain at 0-500 Hz vibration. Potential applications of such thin films include highly sensitive strain sensors, accelerometers, artificial neural networks, artificial skin and polymer electronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite great advances in very large scale integrated-circuit design and manufacturing, performance of even the best available high-speed, high-resolution analog-to-digital converter (ADC) is known to deteriorate while acquiring fast-rising, high-frequency, and nonrepetitive waveforms. Waveform digitizers (ADCs) used in high-voltage impulse recordings and measurements are invariably subjected to such waveforms. Errors resulting from a lowered ADC performance can be unacceptably high, especially when higher accuracies have to be achieved (e.g., when part of a reference measuring system). Static and dynamic nonlinearities (estimated independently) are vital indices for evaluating performance and suitability of ADCs to be used in such environments. Typically, the estimation of static nonlinearity involves 10-12 h of time or more (for a 12-b ADC) and the acquisition of millions of samples at high input frequencies for dynamic characterization. ADCs with even higher resolution and faster sampling speeds will soon become available. So, there is a need to reduce testing time for evaluating these parameters. This paper proposes a novel and time-efficient method for the simultaneous estimation of static and dynamic nonlinearity from a single test. This is achieved by conceiving a test signal, comprised of a high-frequency sinusoid (which addresses dynamic assessment) modulated by a low-frequency ramp (relevant to the static part). Details of implementation and results on two digitizers are presented and compared with nonlinearities determined by the existing standardized approaches. Good agreement in results and time savings achievable indicates its suitability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of black leaf nodes at each level of a linear quadtree is of significant interest in the context of estimation of time and space complexities of linear quadtree based algorithms. The maximum number of black nodes of a given level that can be fitted in a square grid of size 2n × 2n can readily be estimated from the ratio of areas. We show that the actual value of the maximum number of nodes of a level is much less than the maximum obtained from the ratio of the areas. This is due to the fact that the number of nodes possible at a level k, 0≤k≤n − 1, should consider the sum of areas occupied by the actual number of nodes present at levels k + 1, k + 2, …, n − 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite great advances in very large scale integrated-circuit design and manufacturing, performance of even the best available high-speed, high-resolution analog-to-digital converter (ADC) is known to deteriorate while acquiring fast-rising, high-frequency, and nonrepetitive waveforms. Waveform digitizers (ADCs) used in high-voltage impulse recordings and measurements are invariably subjected to such waveforms. Errors resulting from a lowered ADC performance can be unacceptably high, especially when higher accuracies have to be achieved (e.g., when part of a reference measuring system). Static and dynamic nonlinearities (estimated independently) are vital indices for evaluating performance and suitability of ADCs to be used in such environments. Typically, the estimation of static nonlinearity involves 10-12 h of time or more (for a 12-b ADC) and the acquisition of millions of samples at high input frequencies for dynamic characterization. ADCs with even higher resolution and faster sampling speeds will soon become available. So, there is a need to reduce testing time for evaluating these parameters. This paper proposes a novel and time-efficient method for the simultaneous estimation of static and dynamic nonlinearity from a single test. This is achieved by conceiving a test signal, comprised of a high-frequency sinusoid (which addresses dynamic assessment) modulated by a low-frequency ramp (relevant to the static part). Details of implementation and results on two digitizers are presented and compared with nonlinearities determined by the existing standardized approaches. Good agreement in results and time savings achievable indicates its suitability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical models of IEEE 802.11-based WLANs are invariably based on approximations, such as the well-known mean-field approximations proposed by Bianchi for saturated nodes. In this paper, we provide a new approach for modeling the situation when the nodes are not saturated. We study a State Dependent Attempt Rate (SDAR) approximation to model M queues (one queue per node) served by the CSMA/CA protocol as standardized in the IEEE 802.11 DCF. The approximation is that, when n of the M queues are non-empty, the attempt probability of the n non-empty nodes is given by the long-term attempt probability of n saturated nodes as provided by Bianchi's model. This yields a coupled queue system. When packets arrive to the M queues according to independent Poisson processes, we provide an exact model for the coupled queue system with SDAR service. The main contribution of this paper is to provide an analysis of the coupled queue process by studying a lower dimensional process and by introducing a certain conditional independence approximation. We show that the numerical results obtained from our finite buffer analysis are in excellent agreement with the corresponding results obtained from ns-2 simulations. We replace the CSMA/CA protocol as implemented in the ns-2 simulator with the SDAR service model to show that the SDAR approximation provides an accurate model for the CSMA/CA protocol. We also report the simulation speed-ups thus obtained by our model-based simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The operation of thyristor-controlled static VAR compensators (SVCs) at various conduction angles can be used advantageously to meet the unablanced reactive power demands in a system. However, such operation introduces harmonic currents into the AC system. This paper presents an algorithm to evaluate an optimum combination of the phase-wise reactive power generations from SVC and balanced reactive power supply from the AC system, based on the defined performance indices, namely, the telephone influence factor (TIF), the total harmonic current factor (IT) and the distortion factor (D). Results of the studies conducted on a typical distribution system are presented and discussed.