98 resultados para shrink
Resumo:
Includes bibliography
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective was to evaluate the effects of flunixin meglumine administration on physiological and performance responses of transported cattle during feedlot receiving. Forty-five Angus x Hereford steers were ranked by BW on d 0 and assigned to 1 of 3 treatments:1) transport for 1,280 km in a commercial livestock trailer and administration of flunixin meglumine (1.1 mg/kg BW; intravenous) at loading (d 0) and unloading (d 1; FM), 2) transport for 1,280 km in a commercial livestock trailer and administration of 0.9% saline (0.022 mL/kg BW; intravenous) at loading (d 0) and unloading (d 1; TRANS), or 3) no transport and administration of 0.9% saline (0.022 mL/kg BW; intravenous) concurrently with loading (d 0) and unloading (d 1) of FM and TRANS cohorts (CON). Upon arrival and processing for treatment administration on d 1, steers within each treatment were ranked by BW and assigned to 15 feedlot pens (5 pens/treatment, 3 steers/pen). Full BW was recorded before (d -1 and 0) treatment application and at the end of experiment (d 28 and 29) for ADG calculation. Total DMI was evaluated daily from d 1 to 28. Blood samples were collected on d 0 (before treatment administration), 1 (after unloading but before treatment administration), 4, 7, 10, 14, 21, and 28. Body weight shrink from d 0 to 1 was less (P < 0.01) in CON vs. FM and TRANS but similar (P = 0.94) between TRANS and FM. Mean ADG was greater (P <= 0.04) in CON vs. FM and TRANS but similar (P = 0.69) between TRANS and FM. No treatment effects were detected on DMI, but CON had greater G:F vs. TRANS (P = 0.08) and FM (P = 0.02), whereas G:F was similar (P = 0.68) between TRANS and FM. Mean plasma cortisol concentrations tended (P <= 0.09) to be greater in TRANS vs. FM and CON but was similar (P = 0.87) between CON and FM. Plasma NEFA concentrations were greater (P <= 0.02) for TRANS and FM vs. CON on d 1 and greater (P <= 0.04) for FM vs. TRANS and CON on d 4. Plasma ceruloplasmin concentrations were greater (P <= 0.03) for TRANS vs. CON on d 1, 4, and 7, greater (P <= 0.05) for TRANS vs. FM on d 4 and 7, and greater (P <= 0.04) for FM vs. CON on d 1 and 4. Plasma haptoglobin concentrations were greater (P < 0.01) for TRANS vs. CON and FM on d 1 and 4 and greater (P <= 0.05) for FM vs. CON on d 1 and 4. In conclusion, flunixin meglumine reduced the cortisol and acute-phase protein responses elicited by road transport but did not improve receiving performance of feeder cattle.
Resumo:
Angus x Hereford steers (n = 42) and heifers (n = 21) were ranked by gender and BW on d 0 of the experiment and randomly assigned to 1 of 3 treatments: 1) no transport and full access to feed and water (CON); 2) continuous road transport for 1,290 km (TRANS), or 3) road transport for 1,290 km, with rest stops every 430 km (STOP; total of 2 rest stops). Treatments were applied from d 0 to 1 of the experiment. Cattle from TRANS and STOP treatments were transported in separate commercial livestock trailers, within a single 2.1 x 7.2 m compartment, but through the exact same route. During each rest stop, STOP cattle were unloaded and offered mixed alfalfa-grass hay and water for ad libitum consumption for 2 h. Upon arrival of STOP and TRANS on d 1, cattle were ranked by sex and BW within each treatment and assigned to 21 feedlot pens (7 pens/treatment; 2 steers and 1 heifer/pen). Full BW was recorded before (d -1 and 0) treatment application and at the end of experiment (d 28 and 29). Total DMI was evaluated daily from d 1 to 28. Blood samples were collected on d 0 (before loading of TRANS and STOP cattle), 1 (immediately after unloading of TRANS and STOP cattle), 4, 7, 10, 14, 21, and 28. Body weight shrink from d 0 to d 1 was reduced (P < 0.01) in CON compared to TRANS and STOP, and reduced in STOP compared to TRANS. Mean ADG was greater (P < 0.05) in CON compared to TRANS and STOP, but similar (P = 0.68) between TRANS and STOP. No treatment effects were detected (P >= 0.18) on hay, concentrate, and total DMI. Mean G: F was greater (P = 0.05) in CON compared to STOP, tended to be greater (P = 0.08) in CON compared to TRANS, and similar (P = 0.85) between TRANS and STOP. Plasma cortisol concentrations were greater (P <= 0.04) in TRANS compared to CON and STOP on d 1, and greater (P = 0.04) in TRANS compared to CON on d 4. Serum NEFA concentrations were greater (P < 0.01) in TRANS compared to CON and STOP on d 1, and greater (P <= 0.05) in TRANS compared to CON on d 4 and 7. Mean plasma ceruloplasmin concentrations were similar (P = 0.19) among treatments. Plasma haptoglobin concentrations were greater (P <= 0.04) in TRANS compared to CON and STOP on d 1, and in STOP compared to CON on d 1. In conclusion, inclusion of rest stops during a 1,290-km transport prevented the increase in circulating cortisol and alleviated the NEFA and haptoglobin response elicited by transport, but did not improve feedlot receiving performance of transported cattle.
Resumo:
Grain marketing decisions are among the toughest the farm owner/operator or manager must make. Grain producers store grain to speculate on receiving higher prices, earn a return above storage costs, or to take advantage of government programs. Prices must increase enough to cover the additional costs, or forward contract prices must exceed current prices by more than the cost of storage in order to justify forward pricing. The gain in prices received can come from both changes in price level and changes in basis. This research publication discusses all the areas of the cost of grain storage.
Resumo:
Objectives. To purpose a method for predicting the shrinkage stress development in the adhesive layer of resin-composite cylinders that shrink bonded to a single flat surface, by measuring the deflection of a glass coverslip caused by the shrinkage of the bonded cylinders. The correlation between the volume of the bonded resin-composite and the stress-peak was also investigated. Methods. A glass coverslip deflection caused by the shrinkage of a bonded resin-composite cylinder (diameter: d = 8 mm, 4 mm, or 2 mm, height: h = 4 mm, 2 mm, 1 mm, or 0.5 mm) was measured, and the same set-up was simulated by finite element analysis (3D-FEA). Stresses generated in the adhesive layer were plotted versus two geometric variables of the resin-composite cylinder (C-Factor and volume) to verify the existence of correlations between them and stresses. Results. The FEA models were validated. A significant correlation (p < 0.01, Pearson's test) between the stress-peak and the coverslip deflection when the resin-composites were grouped by diameter was found for diameters of 2 and 4 mm. The stress-peak of the whole set of data showed a logarithmic correlation with the bonded resin-composite volume (p < 0.001, Pearson's test), but did not correlate with the C-Factor. Significance. The described method should be considered for standardizing the stress generated by the shrinkage of resin-composite blocks bonded to a single flat surface. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
The collapse of linear polyelectrolyte chains in a poor solvent: When does a collapsing polyelectrolyte collect its counter ions? The collapse of polyions in a poor solvent is a complex system and is an active research subject in the theoretical polyelectrolyte community. The complexity is due to the subtle interplay between hydrophobic effects, electrostatic interactions, entropy elasticity, intrinsic excluded volume as well as specific counter-ion and co-ion properties. Long range Coulomb forces can obscure single molecule properties. The here presented approach is to use just a small amount of screening salt in combination with a very high sample dilution in order to screen intermolecular interaction whereas keeping intramolecular interaction as much as possible (polyelectrolyte concentration cp ≤ 12 mg/L, salt concentration; Cs = 10^-5 mol/L). This is so far not described in literature. During collapse, the polyion is subject to a drastic change in size along with strong reduction of free counterions in solution. Therefore light scattering was utilized to obtain the size of the polyion whereas a conductivity setup was developed to monitor the proceeding of counterion collection by the polyion. Partially quaternized PVP’s below and above the Manning limit were investigated and compared to the collapse of their uncharged precursor. The collapses were induced by an isorefractive solvent/non-solvent mixture consisting of 1-propanol and 2-pentanone, with nearly constant dielectric constant. The solvent quality for the uncharged polyion could be quantified which, for the first time, allowed the experimental investigation of the effect of electrostatic interaction prior and during polyion collapse. Given that the Manning parameter M for QPVP4.3 is as low as lB / c = 0.6 (lB the Bjerrum length and c the mean contour distance between two charges), no counterion binding should occur. However the Walden product reduces with first addition of non solvent and accelerates when the structural collapse sets in. Since the dielectric constant of the solvent remains virtually constant during the chain collapse, the counterion binding is entirely caused by the reduction in the polyion chain dimension. The collapse is shifted to lower wns with higher degrees of quaternization as the samples QPVP20 and QPVP35 show (M = 2.8 respectively 4.9). The combination of light scattering and conductivity measurement revealed for the first time that polyion chains already collect their counter ions well above the theta-dimension when the dimensions start to shrink. Due to only small amounts of screening salt, strong electrostatic interactions bias dynamic as well as static light scattering measurements. An extended Zimm formula was derived to account for this interaction and to obtain the real chain dimensions. The effective degree of dissociation g could be obtained semi quantitatively using this extrapolated static in combination with conductivity measurements. One can conclude the expansion factor a and the effective degree of ionization of the polyion to be mutually dependent. In the good solvent regime g of QPVP4.3, QPVP20 and QPVP35 exhibited a decreasing value in the order 1 > g4.3 > g20 > g35. The low values of g for QPVP20 and QPVP35 are assumed to be responsible for the prior collapse of the higher quaternized samples. Collapse theory predicts dipole-dipole attraction to increase accordingly and even predicts a collapse in the good solvent regime. This could be exactly observed for the QPVP35 sample. The experimental results were compared to a newly developed theory of uniform spherical collapse induced by concomitant counterion binding developed by M. Muthukumar and A. Kundagrami. The theory agrees qualitatively with the location of the phase boundary as well as the trend of an increasing expansion with an increase of the degree of quaternization. However experimental determined g for the samples QPVP4.3, QPVP20 and QPVP35 decreases linearly with the degree of quaternization whereas this theory predicts an almost constant value.
Resumo:
Complex Networks analysis turn out to be a very promising field of research, testified by many research projects and works that span different fields. Those analysis have been usually focused on characterize a single aspect of the system and a study that considers many informative axes along with a network evolve is lacking. We propose a new multidimensional analysis that is able to inspect networks in the two most important dimensions, space and time. To achieve this goal, we studied them singularly and investigated how the variation of the constituting parameters drives changes to the network as a whole. By focusing on space dimension, we characterized spatial alteration in terms of abstraction levels. We proposed a novel algorithm that, by applying a fuzziness function, can reconstruct networks under different level of details. We verified that statistical indicators depend strongly on the granularity with which a system is described and on the class of networks. We keep fixed the space axes and we isolated the dynamics behind networks evolution process. We detected new instincts that trigger social networks utilization and spread the adoption of novel communities. We formalized this enhanced social network evolution by adopting special nodes (called sirens) that, thanks to their ability to attract new links, were able to construct efficient connection patterns. We simulated the dynamics of the system by considering three well-known growth models. Applying this framework to real and synthetic networks, we showed that the sirens, even when used for a limited time span, effectively shrink the time needed to get a network in mature state. In order to provide a concrete context of our findings, we formalized the cost of setting up such enhancement and provided the best combinations of system's parameters, such as number of sirens, time span of utilization and attractiveness.
Resumo:
A successful interaction with objects in the environment requires integrating information concerning object-location with the shape, dimension and position of body parts in space. The former information is coded in a multisensory representation of the space around the body, i.e. peripersonal space (PPS), whereas the latter is enabled by an online, constantly updated, action-orientated multisensory representation of the body (BR) that is critical for action. One of the critical features of these representations is that both PPS and BR are not fixed, but they dynamically change depending on different types of experience. In a series of experiment, I studied plastic properties of PPS and BR in humans. I have developed a series of methods to measure the boundaries of PPS representation (Chapter 4), to study its neural correlates (Chapter 3) and to assess BRs. These tasks have been used to study changes in PPS and BR following tool-use (Chapter 5), multisensory stimulation (Chapter 6), amputation and prosthesis implantation (Chapter 7) or social interaction (Chapter 8). I found that changes in the function (tool-use) and the structure (amputation and prosthesis implantation) of the physical body elongate or shrink both PPS and BR. Social context and social interaction also shape PPS representation. Such high degree of plasticity suggests that our sense of body in space is not given at once, but it is constantly constructed and adapted through experience.
Resumo:
CIGS-Dünnschichtsolarzellen verbinden hohe Effizienz mit niedrigen Kosten und sind damit eine aussichtsreiche Photovoltaik-Technologie. Das Verständnis des Absorbermaterials CIGS ist allerdings noch lückenhaft und benötigt weitere Forschung. In dieser Dissertation werden Computersimulationen vorgestellt, die erheblich zum besseren Verständnis von CIGS beitragen. Es wurden die beiden Systeme Cu(In,Ga)Se2 und (Cu,In,Vac)Se betrachtet. Die Gesamtenergie der Systeme wurde in Clusterentwicklungen ausgedrückt, die auf der Basis von ab initio Dichtefunktionalrechnungen erstellt wurden. Damit war es möglich Monte Carlo (MC)-Simulationen durchzuführen. Kanonische MC-Simulationen von Cu(In,Ga)Se2 zeigen das temperaturabhängige Verhalten der In-Ga-Verteilung. In der Nähe der Raumtemperatur findet ein Übergang von einer geordneten zu einer ungeordneten Phase statt. Unterhalb separiert das System in CuInSe2 und CuGaSe2. Oberhalb existiert eine gemischte Phase mit inhomogen verteilten In- und Ga-Clustern. Mit steigender Temperatur verkleinern sich die Cluster und die Homogenität nimmt zu. Bei allen Temperaturen, bis hin zur Produktionstemperatur der Solarzellen (¼ 870 K), ist In-reiches CIGS homogener als Ga-reiches CIGS. Das (Cu,In,Vac)Se-System wurde mit kanonischen und großkanonischen MC-Simulationen untersucht. Hier findet sich für das CuIn5Se8-Teilsystem ein Übergang von einer geordneten zu einer ungeordneten Phase bei T0 = 279 K. Großkanonische Simulationen mit vorgegebenen Werten für die chemischen Potentiale von Cu und In wurden verwendet, um die Konzentrations- Landschaft und damit die sich ergebenden Stöchiometrien zu bestimmen. Stabilitätsbereiche wurden für stöchiometrisches CuInSe2 und für die Defektphasen CuIn5Se8 und CuIn3Se5 bei einer Temperatur von 174 K identifiziert. Die Bereiche für die Defektphasen sind bei T = 696 K verschwunden. Die Konzentrations-Landschaft reproduziert auch die leicht Cu-armen Stöchiometrien, die bei Solarzellen mit guten Effizienzen experimentell beobachtet werden. Die Simulationsergebnisse können verwendet werden, um den industriellen CIGS-Produktionspr
Resumo:
Grid (or sieve) therapy ("Gitter-" oder "Siebtherapie"), spatially fractionated kilo- and megavolt X-ray therapy, was invented in 1909 by Alban Köhler, a radiologist in Wiesbaden, Germany. He tested it on several patients before 1913 using approximately 60-70kV Hittorf-Crookes tubes. Köhler pushed the X-ray tube's lead-shielded housing against a stiff grid of 1 mm-square iron wires woven 3.0-3.5mm on center, taped tightly to the skin over a thin chamois. Numerous islets unshielded by iron in the pressure-blanched skin were irradiated with up to about 6 erythema doses (ED). The skin was then thoroughly cleansed, disinfected, and bandaged; delayed punctate necrosis healed in several weeks. Although grid therapy was disparaged or ignored until the 1930s, it has been used successfully since then to shrink bulky malignancies. Also, advanced cancers in rats and mice have been mitigated or ablated using Köhler's concept since the early 1990s by unidirectional or stereotactic exposure to an array of nearly parallel microplanar (25-75μm-wide) beams of very intense, moderately hard (median energy approximately 100 keV) synchrotron-generated X rays spaced 0.1-0.4mm on center. Such beams maintain sharp edges at high doses well beneath the skin yet confer little toxicity. They could palliate some otherwise intractable malignancies, perhaps in young children too, with tolerable sequelae. There are plans for such studies in larger animals.
Resumo:
Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique which is commonly used to quantify changes in blood oxygenation and flow coupled to neuronal activation. One of the primary goals of fMRI studies is to identify localized brain regions where neuronal activation levels vary between groups. Single voxel t-tests have been commonly used to determine whether activation related to the protocol differs across groups. Due to the generally limited number of subjects within each study, accurate estimation of variance at each voxel is difficult. Thus, combining information across voxels in the statistical analysis of fMRI data is desirable in order to improve efficiency. Here we construct a hierarchical model and apply an Empirical Bayes framework on the analysis of group fMRI data, employing techniques used in high throughput genomic studies. The key idea is to shrink residual variances by combining information across voxels, and subsequently to construct an improved test statistic in lieu of the classical t-statistic. This hierarchical model results in a shrinkage of voxel-wise residual sample variances towards a common value. The shrunken estimator for voxelspecific variance components on the group analyses outperforms the classical residual error estimator in terms of mean squared error. Moreover, the shrunken test-statistic decreases false positive rate when testing differences in brain contrast maps across a wide range of simulation studies. This methodology was also applied to experimental data regarding a cognitive activation task.
Resumo:
The remarkable advances in nanoscience and nanotechnology over the last two decades allow one to manipulate individuals atoms, molecules and nanostructures, make it possible to build devices with only a few nanometers, and enhance the nano-bio fusion in tackling biological and medical problems. It complies with the ever-increasing need for device miniaturization, from magnetic storage devices, electronic building blocks for computers, to chemical and biological sensors. Despite the continuing efforts based on conventional methods, they are likely to reach the fundamental limit of miniaturization in the next decade, when feature lengths shrink below 100 nm. On the one hand, quantum mechanical efforts of the underlying material structure dominate device characteristics. On the other hand, one faces the technical difficulty in fabricating uniform devices. This has posed a great challenge for both the scientific and the technical communities. The proposal of using a single or a few organic molecules in electronic devices has not only opened an alternative way of miniaturization in electronics, but also brought up brand-new concepts and physical working mechanisms in electronic devices. This thesis work stands as one of the efforts in understanding and building of electronic functional units at the molecular and atomic levels. We have explored the possibility of having molecules working in a wide spectrum of electronic devices, ranging from molecular wires, spin valves/switches, diodes, transistors, and sensors. More specifically, we have observed significant magnetoresistive effect in a spin-valve structure where the non-magnetic spacer sandwiched between two magnetic conducting materials is replaced by a self-assembled monolayer of organic molecules or a single molecule (like a carbon fullerene). The diode behavior in donor(D)-bridge(B)-acceptor(A) type of single molecules is then discussed and a unimolecular transistor is designed. Lastly, we have proposed and primarily tested the idea of using functionalized electrodes for rapid nanopore DNA sequencing. In these studies, the fundamental roles of molecules and molecule-electrode interfaces on quantum electron transport have been investigated based on first-principles calculations of the electronic structure. Both the intrinsic properties of molecules themselves and the detailed interfacial features are found to play critical roles in electron transport at the molecular scale. The flexibility and tailorability of the properties of molecules have opened great opportunity in a purpose-driven design of electronic devices from the bottom up. The results that we gained from this work have helped in understanding the underlying physics, developing the fundamental mechanism and providing guidance for future experimental efforts.
Resumo:
In this paper, we simulate numerically the catastrophic disruption of a large asteroid as a result of a collision with a smaller projectile and the subsequent reaccumulation of fragments as a result of their mutual gravitational attractions. We then investigate the original location within the parent body of the small pieces that eventually reaccumulate to form the largest offspring of the disruption as a function of the internal structure of the parent body. We consider four cases that may represent the internal structure of such a body (whose diameter is fixed at 250 km) in various early stages of the Solar System evolution: fully molten, half molten (i.e., a 26 km-deep outer layer of melt containing half of the mass), solid except a thin molten layer (8 km thick) centered at 10 km depth, and fully solid. The solid material has properties of basalt. We then focus on the three largest offspring that have enough reaccumulated pieces to consider. Our results indicate that the particles that eventually reaccumulate to form the largest reaccumulated bodies retain a memory of their original locations in the parent body. Most particles in each reaccumulated body are clustered from the same original region, even if their reaccumulations take place far away. The extent of the original region varies considerably depending on the internal structure of the parent. It seems to shrink with the solidity of the body. The fraction of particles coming from a given depth is computed for the four cases, which can give constraints on the internal structure of parent bodies of some meteorites. As one example, we consider the ureilites, which in some petrogenetic models are inferred to have formed at particular depths within their parent body. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper focuses on the effects the transfer of ownership from a state‐owned Paper Mill Company to a corporate private ownership has had on environmental and economic shrinkage in Atenquique. This transfer was the result of the ongoing economic process of globalization, after the industrial boom of the paper mills during the second half of the last century. The paper also focuses on how the employees of this Paper Mill Company live and how they have been affected by globalization and how they feel about their paper mill’s new corporate owners. The methodology used was descriptive and exploratory. A sample of ten workers at the company who lived in Atenquique was chosen for an interview. After being inhabited the town of Atenquique developed in terms of population, society and economy. On the other hand the Industrial Company of Atenquique grew during the period when it was a property of the Mexican State. After the company’s privatization, the town started to decline and shrink in three above‐mentioned variables. The impact on the environmental and economic development has initiated the shrinking and declining of Atenquique and the surrounding cities and towns.