993 resultados para semiconductor materials


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report on the material growth and fabrication of high-performance 980-nm strained quantum-well lasers employing a hybrid material system consisting of an Al-free InGaAs-InGaAsP active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in flexibility of laser design, simple epitaxial growth, and improvement of surface morphology and laser performance. The as-grown InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.95 eV) lasers achieve a low threshold current density of 150 A/cm(2) (at a cavity length of 1500 mu m), internal quantum efficiency of similar to 95%, and low internal loss of 1.8 cm(-1). Both broad-area and ridge-waveguide laser devices are fabricated. For 100-mu m-wide stripe lasers with a cavity length of 800 Irm, a slope efficiency of 1.05 W/A and a characteristic temperature coefficient (T-0) of 230 K are achieved. The lifetime test demonstrates a reliable performance. The comparison with our fabricated InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.87 eV) lasers and Al-free InGaAs-InGaAsP (1.6 eV)-InGaP lasers are also given and discussed. The selective etching between AlGaAs and InGaAsP is successfully used for the formation of a ridge-waveguide structure. For 4-mu m-wide ridge-waveguide laser devices, a maximum output power of 350 mW is achieved. The fundamental mode output power can be up to 190 mW with a slope efficiency as high as 0.94 W/A.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The design and characteristics of a dual ion beam epitaxy system (DIBE) are discussed. This system is composed of two beam lines, each providing a mass-separated ion beam converging finally with the other into the target chamber. The ions are decelerated and deposited on a substrate which can be heated to a temperature of 800-degrees-C. Currents of a few hundred microamperes are available for both beams and the deposit energies are in the range from tens to 1000 eV. The pressure of the target chamber during processing is about 7 x 10(-6) Pa. Preliminary experiments have proved that compound semiconductor materials such as GaN can be synthesized using the DIBE system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wafer bonding is regardless of lattice mismatch in the integration of dissimilar semiconductor materials. This technology differs from the heteroepitaxy mainly in the mechanism of generating dislocations at the interface. A model of dislocations at the bonded interface is proposed in this paper. Edge-like dislocations, which most efficiently relax the strain, are predominant at the bonded interface. But the thermal stress associated with large thermal expansion misfit may drive dislocations away from the bonded interface upon cooling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Open-tube Ga diffusion into a SiO2/Si structure was used for fabrication of the high speed thyristor. The advantages of open-tube Ga diffusion are as follows; it is easier to operate and easier to control the profile of the Ga concentration during processing, a clean surface, which is free from alloy spots can be obtained, this technique ensures to improve the on-state characteristics and dynamic characteristics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent experimental works devoted to the phenomena of mixing observed at metallic multilayers Ni/Si irradiated by swift heavy ions irradiations make it necessary to revisit the insensibility of crystalline Si under huge electronic excitations. Knowing that Ni is an insensitive material, such observed mixing would exist only if Si is a sensitive material. In order to extend the study of swift heavy ion effects to semiconductor materials, the experimental results obtained in bulk silicon have been analyzed within the framework of the inelastic thermal spike model. Provided the quenching of a boiling ( or vapor) phase is taken as the criterion of amorphization, the calculations with an electron-phonon coupling constant g(300 K) = 1.8 x 10(12) W/cm(3)/K and an electronic diffusivity D-e(300 K) = 80 cm(2)/s nicely reproduce the size of observed amorphous tracks as well as the electronic energy loss threshold value for their creation, assuming that they result from the quenching of the appearance of a boiling phase along the ion path. Using these parameters for Si in the case of a Ni/Si multilayer, the mixing observed experimentally can be well simulated by the inelastic thermal spike model extended to multilayers, assuming that this occurs in the molten phase created at the Ni interface by energy transfer from Si. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We realized ambipolar transport behavior in field-effect transistors by using p-p isotype heterojunction films as active layers, which consisted of two p-type semiconductor materials, 2, 2'; 7', 2 ''-terphenanthrenyl (Ph3) and vanadyl-phthalocyanine (VOPc). The ambipolar charge transport was attributed to the interfacial electronic structure of Ph3-VOPc isotype heterojunction, and electrons and holes were accumulated at both sides of the narrow band-gap VOPc and the wide band-gap Ph3, respectively, which were confirmed by the capacitance-voltage relationship of metal-oxide-semiconductor diodes. The accumulation thickness of carriers was also obtained by changing the heterojunction active layer thickness. Furthermore, the results indicate that the device performance is relative to interfacial electronic structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The organic films of vanadyl-phthalocyanine (VOPc) compounds showed weak epitaxy growth (WEG) behavior on thin ordered para-sexiphenyl (p-6P) layer with high substrate temperature. The WEG of VOPc molecules standing up on the p-6P layer leaded to high in-plane orientation and their layer-by-layer growth behavior. In consequence, high quality VOPc films were obtained, which were consisted of lamellar crystals. Organic field-effect transistors with VOPc/p-6P films as active layers realized high mobility of above 1 cm(2)/V s. This result indicated that nonplanar compounds can obtain a device performance better than planar compounds, therefore, it may provide a rule to find disklike organic semiconductor materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last two decades, semiconductor nanocrystals have been the focus of intense research due to their size dependant optical and electrical properties. Much is now known about how to control their size, shape, composition and surface chemistry, allowing fine control of their photophysical and electronic properties. However, genuine concerns have been raised regarding the heavy metal content of these materials, which is toxic even at relatively low concentrations and may limit their wide scale use. These concerns have driven the development of heavy metal free alternatives. In recent years, germanium nanocrystals (Ge NCs) have emerged as environmentally friendlier alternatives to II-VI and IV-VI semiconductor materials as they are nontoxic, biocompatible and electrochemically stable. This thesis reports the synthesis and characterisation of Ge NCs and their application as fluorescence probes for the detection of metal ions. A room-temperature method for the synthesis of size monodisperse Ge NCs within inverse micelles is reported, with well-defined core diameters that may be tuned from 3.5 to 4.5 nm. The Ge NCs are chemically passivated with amine ligands, minimising surface oxidation while rendering the NCs dispersible in a range of polar solvents. Regulation of the Ge NCs size is achieved by variation of the ammonium salts used to form the micelles. A maximum quantum yield of 20% is shown for the nanocrystals, and a transition from primarily blue to green emission is observed as the NC diameter increases from 3.5 to 4.5 nm. A polydisperse sample with a mixed emission profile is prepared and separated by centrifugation into individual sized NCs which each showed blue and green emission only, with total suppression of other emission colours. A new, efficient one step synthesis of Ge NCs with in situ passivation and straightforward purification steps is also reported. Ge NCs are formed by co-reduction of a mixture of GeCl4 and n-butyltrichlorogermane; the latter is used both as a capping ligand and a germanium source. The surface-bound layer of butyl chains both chemically passivates and stabilises the Ge NCs. Optical spectroscopy confirmed that these NCs are in the strong quantum confinement regime, with significant involvement of surface species in exciton recombination processes. The PL QY is determined to be 37 %, one of the highest values reported for organically terminated Ge NCs. A synthetic method is developed to produce size monodisperse Ge NCs with modified surface chemistries bearing carboxylic acid, acetate, amine and epoxy functional groups. The effect of these different surface terminations on the optical properties of the NCs is also studied. Comparison of the emission properties of these Ge NCs showed that the wavelength position of the PL maxima could be moved from the UV to the blue/green by choice of the appropriate surface group. We also report the application of water-soluble Ge NCs as a fluorescent sensing platform for the fast, highly selective and sensitive detection of Fe3+ ions. The luminescence quenching mechanism is confirmed by lifetime and absorbance spectroscopies, while the applicability of this assay for detection of Fe3+ in real water samples is investigated and found to satisfy the US Environmental Protection Agency requirements for Fe3+ levels in drinkable water supplies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of sustainable hydrogen production is a key target in the further facilitation of a hydrogen economy. Solar hydrogen generation through the photolytic splitting of water sensitised by semiconductor materials is attractive as it is both renewable and does not lead to problematic by-products, unlike current hydrogen sources such as natural gas. Consequently, the development of these semiconductor materials has undergone considerable research since their discovery over 30 years ago and it would seem prescient to review the more practical results of this research. Among the critical factors influencing the choice of semiconductor material for photoelectrolysis of water are the band-gap energies, flat band potentials and stability towards photocorrosion; the latter of these points directs us to focus on metal oxides. Careful design of thin films of photocatalyst material can eliminate potential routes of losses in performance, i.e., recombination at grain boundaries. Methods to overcome these problems are discussed such as coupling a photoanode for photolysis of water to a photovoltaic cell in a 'tandem cell' device.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The metallo-phthalocyanines (MPcs) are an interesting group of organic semiconductor materials for applications such as large area solar cells due to their optoelectronic properties coupled with the possibility of easily and cheaply fabricating thin films of MPcs [1, 2]. As for organic semiconductors in general, many of the interesting properties of the MPcs such as magnetism, light absorption and charge transport, are highly anisotropic [2, 3]. To maximise the efficiency of a device based on these materials it is therefore important to study their molecular orientation in films and to assess the influence of different growth conditions and substrate treatments.
X-ray diffraction is a well established and powerful technique for studying texture (and hence molecular orientation) in crystalline materials, but it cannot provide any information about amorphous or nanocrystalline films. In electron paramagnetic resonance (EPR) spectroscopy the signal comes from the spin of unpaired electrons in the material. This technique therefore does not require the sample to be crystalline. It works for any sample with paramagnetic centres such as the MPcs where the unpaired electrons are contributed by the metal. In this paper we present a continuous-wave X-band EPR study using the anisotropy of the EPR spectrum of CuPc [4] to determine the orientation effects in different types of CuPc films. From these measurements we gain insight into the molecular arrangement of films with different spin concentrations, and apply our technique to the study of molecular orientation in photovoltaic cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Solar hydrogen production assisted with semiconductor materials is a promising way to provide alternative energy sources in the future. Such a photocatalytic reaction normally takes place on the active sites of the catalysts surface, and the identification of the active sites is crucial for understanding the photocatalytic reaction mechanism and further improving the photocatalytic efficiency. However, the active sites of model catalysts are still largely disputed because of their structural complexity. Conventionally, H-2 evolution from solar water splitting over Pt/TiO2 is widely deemed to take place on metallic Pt nanoparticles. Oppositely, we report through a combined experimental and theoretical approach, that metallic Pt nanoparticles have little contribution to the activity of photocatalytic H-2 evolution; the oxidized Pt species embedded on the TiO2 surface are the key active sites and primarily responsible for the activity of the hydrogen evolution Pt/TiO2 photocatalyst.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we present results about the functioning of a multilayered a-SiC:H heterostructure as a device for wavelength-division demultiplexing of optical signals. The device is composed of two stacked p-i-n photodiodes, both optimized for the selective collection of photogenerated carriers. Band gap engineering was used to adjust the photogeneration and recombination rates profiles of the intrinsic absorber regions of each photodiode to short and long wavelength absorption and carrier collection in the visible spectrum. The photocurrent signal using different input optical channels was analyzed at reverse and forward bias and under steady state illumination. This photocurrent is used as an input for a demux algorithm based on the voltage controlled sensitivity of the device. The device functioning is explained with results obtained by numerical simulation of the device, which permit an insight to the internal electric configuration of the double heterojunction.These results address the explanation of the device functioning in the frequency domain to a wavelength tunable photocapacitance due to the accumulation of space charge localized at the internal junction. The existence of a direct relation between the experimentally observed capacitive effects of the double diode and the quality of the semiconductor materials used to form the internal junction is highlighted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nous investiguons dans ce travail la création d'échantillons permettant l'étude du comportement des polaritons excitoniques dans les matériaux semi-conducteurs organiques. Le couplage fort entre les états excités d'électrons et des photons impose la création de nouveaux états propres dans le milieu. Ces nouveaux états, les polaritons, ont un comportement bosonique et sont donc capables de se condenser dans un état fortement dégénéré. Une occupation massive de l'état fondamental permet l'étude de comportements explicables uniquement par la mécanique quantique. La démonstration, au niveau macroscopique, d'effets quantiques promet d'éclairer notre compréhension de la matière condensée. De plus, la forte localisation des excitons dans les milieux organiques permet la condensation des polaritons excitoniques organiques à des températures beaucoup plus hautes que dans les semi-conducteurs inorganiques. À terme, les échantillons proposés dans ce travail pourraient donc servir à observer une phase cohérente macroscopique à des températures facilement atteignables en laboratoire. Les cavités proposées sont des résonateurs Fabry-Perot ultraminces dans lesquels est inséré un cristal unique d'anthracène. Des miroirs diélectriques sont fabriqués par une compagnie externe. Une couche d'or de 60 nanomètres est ensuite déposée sur leur surface. Les miroirs sont ensuite mis en contact, or contre or, et compressés par 2,6 tonnes de pression. Cette pression soude la cavité et laisse des espaces vides entre les lignes d'or. Une molécule organique, l'anthracène, est ensuite insérée par capillarité dans la cavité et y est cristallisée par la suite. Dans leur état actuel, les cavités présentent des défauts majeurs quant à la planarité des miroirs et à l'uniformité des cristaux. Un protocole détaillé est présenté et commenté dans ce travail. Nous y proposons aussi quelques pistes pour régler les problèmes courants de l'appareil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work, we report the third order nonlinear optical properties of ZnO thin films deposited using self assembly, sol gel process as well as pulsed laser ablation by z scan technique. ZnO thin films clearly exhibit a negative nonlinear index of refraction at 532 nm and the observed nonlinear refraction is attributed to two photon absorption followed by free carrier absorption. Although the absolute nonlinear values for these films are comparable, there is a change in the sign of the absorptive nonlinearity of the films. The films developed by dip coating and pulsed laser ablation exhibit reverse saturable absorption whereas the self assembled film exhibits saturable absorption. These different nonlinear characteristics in the self assembled films can be mainly attributed to the saturation of linear absorption of the ZnO defect states.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have investigated the third-order nonlinearity in ZnO nanocolloids with particle sizes in the range 6-18 nm by the z-scan technique. The third-order optical susceptibility χ(3) increases with increasing particle size (R) within the range of our investigations. In the weak confinement regime, an R2 dependence of χ(3) is obtained for ZnO nanocolloids. The optical limiting response is also studied against particle size.