960 resultados para pulsed flame photometric detector
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Este trabalho teve como objetivo identificar e quantificar os constituintes dos óleos essenciais de Illicum verum, Ageratum conyzoides, Piper hispidinervum e Ocotea odorifera, bem como avaliar a toxicidade para o pulgão-verde Schizaphis graminum. A qualificação dos constituintes foi realizada por meio de um cromatógrafo gasoso + espectrômetro de massas, e a quantificação, por um cromatógrafo gasoso + detector de ionização de chama, ambos com uma coluna DB5. O método de hidrodestilação promoveu um rendimento (p/p) de 3,81% para I. verum, 0,46% para A. conyzoides, 2,85% para P. hispidinervum e 0,68% para O. odorífera. Já os componentes majoritários foram: precoceno (87,0%) e (E)-cariofileno (7,1%) para A. conyzoides; (E)-anetol (90,4%), limoneno (2,6%) e metil-chavicol (1,3%) para I. verum; metil-eugenol (81,2%) e safrol (10,6%) para Ocotea odorífera; e safrol (82,5%) e α-terpinoleno (13,4%) para P. hispidinervum. Pelos testes de toxicidade aguda (24 horas) com folhas de sorgo ou papel-filtro contaminados, verificou-se que o óleo de A. conyzoides foi o mais tóxico para o pulgão, com CL50 de 7,13 e 7,08 µL óleo/cm2 respectivamente, seguido por O. odorifera com CL50 de 11,80 e 103,00 µL óleo/cm2 respectivamente; I. verum de 51,80 µL óleo/cm2 em ambos os substratos; e o menos tóxico foi o óleo essencial de P. hispidinervum, com CL50 de 62,50 e 143,00 µL óleo/cm2, respectivamente. Dessa maneira, sugere-se que o uso dos óleos essenciais pode representar uma nova ferramenta em programas de manejo integrado de pragas.
Resumo:
This study aimed to evaluate the potential of CH4 and CO2 in vitro production of soybean hulls, sunflower meal, corn, citrus pulp and corn silage. Four rumen-cannulated sheep were fed diets containing the evaluated ingredients at 40:60 forage:concentrate ratio. The gases produced by samples incubation were measured by injection into a gas chromatograph equipped with flame ionization detector. The experimental design was completely randomized with repeated measures, with three replicates for each evaluated food at four different periods. Under the experimental conditions, we verified different potential gas production among the ingredients. The citrus pulp meal was the ingredient with the greatest potential for CO2production. Corn silage and soybean hulls showed the greatest potential while citrus pulp and sunflower meal showed the least potential for CH4 production, when expressed in mL/g of degraded dry matter; therefore, they can be considered, among the evaluated ingredients, those with the lowest environmental impact.
Resumo:
The present study aimed to evaluate the volatiles profile of red mombin (Spondias purpurea) pulp and its powder produced by spray-drying (SD) as an example to show utility of headspace solid-phase microextraction (HS-SPME) in the analysis of parameters such as the quality and stability of fruit products. Volatiles profiles of the pulp were identified by gas chromatography-mass spectrometry (GC-MS), quantified by gas chromatography-flame ionization detector (GC-FID) and compared to the profile of the powder stored at 0, 60 and 120 days in plastic (PP) or laminated packages (LP). The results showed that the technique was able to identify 36 compounds in the red mombin pulp, 17 out of which have been described for the first time in this fruit, showing that red mombin fresh pulp appears to be unique in terms of volatiles composition. However, only 24 compounds were detected in the powder. This decrease is highly correlated (r(2) = 0.99), at least for the majority of compounds, to the degree of volatility of compounds. Furthermore, the powder stored in PP or LP showed no statistical differences in the amounts of its components for a period of 120 days of storage. Finally, this work shows how HS-SPME analysis can be a valuable tool to assess the quality and stability of fruit products.
Resumo:
The ethyl carbamate is a compound present in most foods yeast-distillates; due to its carcinogenic potential, national legislation has established a limit of 0.150 µg / mL for spirits, so the values above the same, pose a threat to both public health as well for the economic sector by preventing the export of these products. The aim of this work is to provide the optimization of an analytical method employing the technique of gas chromatography equipped with flame ionization detector (FID) to determine the concentration levels of ethyl carbamate in some samples of wine. The use of ethyl acetate as solvent employed in the extraction, the ethyl carbamate present in wine samples proved to be suitable, where Recoveries were between 97.6 to 103.3% (m / m), with a standard deviation for between 0.56 to 3.50%. The concentrations of ethyl carbamate in particular wine samples vary between 3.22 µg / ml and 3.80 µg / mL, with a mean of 3.48 µg / mL. These valuesare all above the limit set by law. Thus, the results indicate the need for changes in the process of wine production, in order to control the levels of the substance
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Hydrogen is known as a clean energy resource. The biological production of hydrogen has been attracting attention as an environmentally friendly processs that does not consume fossil fuels. Cellulosic plant and waste materials are potential resources for fermentative hydrogen production. Cellulose is a linear biopolymer of glucose molecules, connected by β-1,4-glycosidic bonds. Enzymatic hydrolysis of cellulose requires the presence of cellulase. The present study aimed to investigate the efficiency of acid pretreatment on ruminal fluid in order to enrich H2 producing bacteria consortia to enhance biohydrogen rate and substrate removal efficiency. In this study, fermentative hydrogen producers were enriched on cellulose (2g/L) in a modificated Del Nery medium (DNM) at 37ºC and initial pH 7.0 using rumen fluid (10% v/v) as inoculum. To increase the hydrogen production it was added cellulose (10mL) to the medium. The gas products (mainly H2 and CO2) was analyzed by gas chromatography (Shimadzu GC 2010) using a thermal conductivity detector. The volatile fatty acids and ethanol were also detected by GC using a flame ionization detector. Cellulose degradation was quantified by using the phenolsulfuric acid method. Analysis showed that the biogas produced from the anaerobic fermentation contained only hydrogen and carbon dioxide, without detectable methane after acid pretreatment test. On DNM the hydrogen production started with 4 h (5,3 x 105 mmol H2/L) of incubation, and the maximum H2 concentration was observed with 34 h (7,1 x 106 mmol H2/L) of incubation. During the process, it was observed a predominance of acetic acid and butyric acid as well as a low production of acetone, ethanol and nbutanol in all experimental phases. Butyrate accounted for more than 77% of total. As a result of the accumulation of volatile fatty acids (VFAs), the pH value in anaerobic digestion system was reduced to 4,0. On microscopy analyses there were observed rods with endospores. The batch anaerobic fermentation assays performed on anaerobic mixed inoculum from rumen fluid demonstrated the feasibility of H2 generation utilizing cellulose as substrate. Based on the results, it can be concluded that the acid treatment was efficient to inhibit the methanogenic archaea cells present in rumen fluid. The rumen fluid cells present a potential route in converting renewable biomass such as cellulose into hydrogen energy.
Resumo:
The type A gasoline samples were analyzed by gas chromatography with flame ionization detector (GC-FID) which allowed quantifying and classifying of the various compounds into different classes of hydrocarbons. Several physicochemical parameters were evaluated according to the official methods in order to compare the results obtained against the limits established by the Agência Nacional de Petróleo, Gás Natural e Biocombustíveis (ANP, 2011). Additionally, principal component analysis (PCA) was applied to discriminate the samples studied, which revealed the separation of four groups according to their chemical composition determined in samples collected from the eight fuel distributors in the State of Pará.
Resumo:
The study of organic pollution in estuaries is very relevant as they are transitional zones, which control the fluxes of water, nutrients, particles and organisms from and to the continental margins, rivers and oceans. The aims of this study are:(1) to evaluate organic pollution in coastal sediments of Montevideo, Río de la Plata Estuary by a multi-biomarker approach, (2) to identify major sources of organic pollutants through qualitative analysis using molecular indices, (3) to assess the relative contribution of different sources of hydrocarbons through quantitative source apportionment employing (PCA/MLR) as chemometric technique. Sampling surveys were carried out in July 2009, January 2010 and March 2011 in 37 stations along the middle portion of the Río de la Plata Estuary across the coast of Montevideo. In each station surface (0–2 cm depth) sediment samples were taken with a 0.05 m2 van Veen grab. The Soxhlet extracted organic compounds included aliphatic hydrocarbons (AHs) and steroids, analysed by gas chromatograph with flame ionization detector (GC-FID), linear alkylbenzenes (LABs) and polycyclic aromatic hydrocarbons (PAHs) quantified by gas chromatograph with mass spectrometer (GC/MS). All biomarkers presented the highest concentrations in the stations of Montevideo Bay indicating high levels of organic pollution. The combination of molecular indices and the chemometric technique showed that major sources of AHs and PAHs are petroleum inputs and combustion, due to oil transport and refinement, harbour activities and vehicular emissions.Major sources of LABs and steroids are urban and domestic sewage. Identification, quantification and source assignment of those organic compounds are very important to assess pollution and to give tools to help minimize the inputs into the environment
Resumo:
The focus of this thesis was the in-situ application of the new analytical technique "GCxGC" in both the marine and continental boundary layer, as well as in the free troposphere. Biogenic and anthropogenic VOCs were analysed and used to characterise local chemistry at the individual measurement sites. The first part of the thesis work was the characterisation of a new set of columns that was to be used later in the field. To simplify the identification, a time-of-flight mass spectrometer (TOF-MS) detector was coupled to the GCxGC. In the field the TOF-MS was substituted by a more robust and tractable flame ionisation detector (FID), which is more suitable for quantitative measurements. During the process, a variety of volatile organic compounds could be assigned to different environmental sources, e.g. plankton sources, eucalyptus forest or urban centers. In-situ measurements of biogenic and anthropogenic VOCs were conducted at the Meteorological Observatory Hohenpeissenberg (MOHP), Germany, applying a thermodesorption-GCxGC-FID system. The measured VOCs were compared to GC-MS measurements routinely conducted at the MOHP as well as to PTR-MS measurements. Furthermore, a compressed ambient air standard was measured from three different gas chromatographic instruments and the results were compared. With few exceptions, the in-situ, as well as the standard measurements, revealed good agreement between the individual instruments. Diurnal cycles were observed, with differing patterns for the biogenic and the anthropogenic compounds. The variability-lifetime relationship of compounds with atmospheric lifetimes from a few hours to a few days in presence of O3 and OH was examined. It revealed a weak but significant influence of chemistry on these short-lived VOCs at the site. The relationship was also used to estimate the average OH radical concentration during the campaign, which was compared to in-situ OH measurements (1.7 x 10^6 molecules/cm^3, 0.071 ppt) for the first time. The OH concentration ranging from 3.5 to 6.5 x 10^5 molecules/cm^3 (0.015 to 0.027 ppt) obtained with this method represents an approximation of the average OH concentration influencing the discussed VOCs from emission to measurement. Based on these findings, the average concentration of the nighttime NO3 radicals was estimated using the same approach and found to range from 2.2 to 5.0 x 10^8 molecules/cm^3 (9.2 to 21.0 ppt). During the MINATROC field campaign, in-situ ambient air measurements with the GCxGC-FID were conducted at Tenerife, Spain. Although the station is mainly situated in the free troposphere, local influences of anthropogenic and biogenic VOCs were observed. Due to a strong dust event originating from Western Africa it was possible to compare the mixing ratios during normal and elevated dust loading in the atmosphere. The mixing ratios during the dust event were found to be lower. However, this could not be attributed to heterogeneous reactions as there was a change in the wind direction from northwesterly to southeasterly during the dust event.
Resumo:
Volatile organic compounds play a critical role in ozone formation and drive the chemistry of the atmosphere, together with OH radicals. The simplest volatile organic compound methane is a climatologically important greenhouse gas, and plays a key role in regulating water vapour in the stratosphere and hydroxyl radicals in the troposphere. The OH radical is the most important atmospheric oxidant and knowledge of the atmospheric OH sink, together with the OH source and ambient OH concentrations is essential for understanding the oxidative capacity of the atmosphere. Oceanic emission and / or uptake of methanol, acetone, acetaldehyde, isoprene and dimethyl sulphide (DMS) was characterized as a function of photosynthetically active radiation (PAR) and a suite of biological parameters, in a mesocosm experiment conducted in the Norwegian fjord. High frequency (ca. 1 minute-1) methane measurements were performed using a gas chromatograph - flame ionization detector (GC-FID) in the boreal forests of Finland and the tropical forests of Suriname. A new on-line method (Comparative Reactivity Method - CRM) was developed to directly measure the total OH reactivity (sink) of ambient air. It was observed that under conditions of high biological activity and a PAR of ~ 450 μmol photons m-2 s-1, the ocean acted as a net source of acetone. However, if either of these criteria was not fulfilled then the ocean acted as a net sink of acetone. This new insight into the biogeochemical cycling of acetone at the ocean-air interface has helped to resolve discrepancies from earlier works such as Jacob et al. (2002) who reported the ocean to be a net acetone source (27 Tg yr-1) and Marandino et al. (2005) who reported the ocean to be a net sink of acetone (- 48 Tg yr-1). The ocean acted as net source of isoprene, DMS and acetaldehyde but net sink of methanol. Based on these findings, it is recommended that compound specific PAR and biological dependency be used for estimating the influence of the global ocean on atmospheric VOC budgets. Methane was observed to accumulate within the nocturnal boundary layer, clearly indicating emissions from the forest ecosystems. There was a remarkable similarity in the time series of the boreal and tropical forest ecosystem. The average of the median mixing ratios during a typical diel cycle were 1.83 μmol mol-1 and 1.74 μmol mol-1 for the boreal forest ecosystem and tropical forest ecosystem respectively. A flux value of (3.62 ± 0.87) x 1011 molecules cm-2 s-1 (or 45.5 ± 11 Tg CH4 yr-1 for global boreal forest area) was derived, which highlights the importance of the boreal forest ecosystem for the global budget of methane (~ 600 Tg yr-1). The newly developed CRM technique has a dynamic range of ~ 4 s-1 to 300 s-1 and accuracy of ± 25 %. The system has been tested and calibrated with several single and mixed hydrocarbon standards showing excellent linearity and accountability with the reactivity of the standards. Field tests at an urban and forest site illustrate the promise of the new method. The results from this study have improved current understanding about VOC emissions and uptake from ocean and forest ecosystems. Moreover, a new technique for directly measuring the total OH reactivity of ambient air has been developed and validated, which will be a valuable addition to the existing suite of atmospheric measurement techniques.
Resumo:
BACKGROUND: For almost 30 years, phosphatidylethanol (PEth) has been known as a direct marker of alcohol consumption. This marker stands for consumption in high amounts and for a longer time period, but it has been also detected after 1 high single intake of ethanol (EtOH). The aim of this study was to obtain further information about the formation and elimination of PEth 16:0/18:1 by simulating extensive drinking. METHODS: After 3 weeks of alcohol abstinence, 11 test persons drank an amount of EtOH leading to an estimated blood ethanol concentration of 1 g/kg on each of 5 successive days. After the drinking episode, they stayed abstinent for 16 days with regular blood sampling. PEth 16:0/18:1 analysis was performed using liquid chromatography-tandem mass spectrometry (high-performance liquid chromatography 1100 system and QTrap 2000 triple quadrupole linear ion trap mass spectrometer. Values of blood alcohol were obtained using a standardized method with headspace gas chromatography flame ionization detector. RESULTS: Maximum measured concentrations of EtOH were 0.99 to 1.83 g/kg (mean 1.32 g/kg). These values were reached 1 to 3 hours after the start of drinking (mean 1.9 hours). For comparison, 10 of 11 volunteers had detectable PEth 16:0/18:1 values 1 hour after the start of drinking, ranging from 45 to 138 ng/ml PEth 16:0/18:1. Over the following days, concentrations of PEth 16:0/18:1 increased continuously and reached the maximum concentrations of 74 to 237 ng/ml between days 3 and 6. CONCLUSIONS: This drinking experiment led to measurable PEth concentrations. However, PEth 16:0/18:1 concentrations stayed rather low compared with those of alcohol abusers from previous studies.