949 resultados para phosphate solubilization
Resumo:
A 2(3-1) factorial experimental design was used to evaluate the performance of a perforated rotating disc contactor to extract alpha-toxin from the fermented broth of Clostridium perfringens Type A by aqueous two-phase system of polyethylene glycol-phosphate salts. The influence of three independent variables, specifically the dispersed phase flowrate, the continuous phase flowrate and the disc rotational speed, was investigated on the hold up, the mass transfer coefficient, the separation efficiency and the purification factor, taken as the response variables. The optimum dispersed phase flowrate was 3.0 mL/min for all these responses. Besides, maximum values of hold up (0.80), separation efficiency (0. 10) and purification factor (2.4) were obtained at this flowrate using the lowest disc rotational speed (35 rpm), while the optimum mass transfer coefficient (0. 165 h(-1)) was achieved at the highest agitation level (140 rpm). The results of this study demonstrated that the dispersed phase flowrate strongly influenced the performance of PRDC, in that both the mass transfer coefficient and hold up increased with this parameter. (c) 2007 Elsevier B. V. All rights reserved.
Resumo:
BACKGROUND: Purification of a-toxin produced by Clostridium perfringens type A in aqueous two-phase systems (ATPS) was studied with a full two-level factorial design on two factors (concentrations of 8000 g mol(-1) PEG and phosphate salt at pH 8.0), to estimate the influence of these factors on the purification results. RESULTS: The partition coefficient (K), purification factor (PF) and activity yield (Y) were strongly influenced by the PEG and phosphate concentrations. Raising the levels of the two factors increased these responses. The highest purification factor (5.7) was obtained with PEG and phosphate concentrations of 17.5% and 15%, respectively. CONCLUSION: These results support the proposal that polymer excluded volume and hydrophobic interactions are the factors that drive the alpha-toxin in PEG/phosphate aqueous two-phase systems. (c) 2008 Society of Chemical Industry
Resumo:
Environmental issues due to increases in emissions of air pollutants and greenhouse gases are driving the development of clean energy delivery technologies such as fuel cells. Low temperature Proton Exchange Membrane Fuel Cells (PEMFC) use hydrogen as a fuel and their only emission is water. While significant advances have been made in recent years, a major limitation of the current technology is the cost and materials limitations of the proton conduction membrane. The proton exchange membrane performs three critical functions in the PEMFC membrane electrode assembly (MEA): (i) conduction of protons with minimal resistance from the anode (where they are generated from hydrogen) to the cathode (where they combine with oxygen and electrons, from the external circuit or load), (ii) providing electrical insulation between the anode and cathode to prevent shorting, and (iii) providing a gas impermeable barrier to prevent mixing of the fuel (hydrogen) and oxidant. The PFSA (perfluorosulphonic acid) family of membranes is currently the best developed proton conduction membrane commercially available, but these materials are limited to operation below 100oC (typically 80oC, or lower) due to the thermochemical limitations of this polymer. For both mobile and stationary applications, fuel cell companies require more durable, cost effective membrane technologies capable of delivering enhanced performance at higher temperatures (typically 120oC, or higher. This is driving research into a wide range of novel organic and inorganic materials with the potential to be good proton conductors and form coherent membranes. There are several research efforts recently reported in the literature employing inorganic nanomaterials. These include functionalised silica phosphates [1,2], fullerene [3] titania phosphates [4], zirconium pyrophosphate [5]. This work addresses the functionalisation of titania particles with phosphoric acid. Proton conductivity measurements are given together with structural properties.
Resumo:
10-(Octyloxy) decyl-2-(trimethylammonium) ethyl phosphate (ODPC) is an alkylphospholipid that can interact with cell membranes because of its amphiphilic character. We describe here the interaction of ODPC with liposomes and its toxicity to leukemic cells with an ED-50 of 5.4, 5.6 and 2.9 pM for 72 h of treatment for inhibition of proliferation of NB4, U937 and K562 cell lines, respectively, and lack of toxicity to normal hematopoietic progenitor cells at concentrations up to 25 pM. The ED-50 for the non-malignant HEK-293 and primary human umbilical vein endothelial cells (HUVEC) was 63.4 and 60.7 mu M, respectively. The critical micellar concentration (CMC) of ODPC was 200 mu M. Dynamic light scattering indicated that dipalmitoylphosphatidylcholine (DPPC) liposome size was affected only above the CMC of ODPC. Differential calorimetric scanning (DCS) of liposomes indicated a critical transition temperature (T(c)) of 41.5 degrees C and an enthalpy (Delta H) variation of 7.3 kcal mol(-1). The presence of 25 mu M ODPC decreased T(c) and Delta H to 393 degrees C and 4.7 kcal mol(-1), respectively. ODPC at 250 mu M destabilized the liposomes (36.3 degrees C. 0.46 kcal mol(-1)). Kinetics of 5(6)-carboxyfluorescein (CF) leakage from different liposome systems indicated that the rate and extent of CF release depended on liposome composition and ODPC concentration and that above the CMC it was instantaneous. Overall, the data indicate that ODPC acts on in vitro membrane systems and leukemia cell lines at concentrations below its CMC, suggesting that it does not act as a detergent and that this effect is dependent on membrane composition. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A new solution route for the obtainment of highly pure luminescent rare-earth orthophosphates in hydrothermal conditions was developed. By starting from soluble precursors (lanthanide tripolyphosphato complexes. i.e. with P(3)O(10)(5) as a complexing agent and as in orthophosphate source) and by applying surfactants in a water/toluene medium, the precipitations are confined to reverse micelle structures, thus yielding nanosized and homogeneous orthophosphates The method was employed to obtain lanthanide-activated lanthanum phosphates, which can be applied as red (LaPO(4):Eu(3+)), green (LaPO(4):Ce(3+), Tb(3+)) and blue (LaPO(4):Tm(3+)) phosphors The produced materials were analyzed by powder X-ray diffractometry, scanning electron microscopy, infrared spectroscopy and luminescence spectroscopy (emission, excitation, lifetimes and chromaticity coordinates) (C) 2009 Elsevier B V All rights reserved
Resumo:
The electrochemical oxidation of acid black 210 dye (AB-210) on the boron-doped diamond (BDD) was investigated under different pH conditions. The best performance for the AB-210 oxidation occurred in alkaline phosphate solution. This is probably due to oxidizing agents such as phosphate radicals and peroxodiphosphate ions, which can be electrochemically produced with good yields on the BDD anode, mainly in alkaline solution. Under this condition, the COD (chemical oxygen demand) removal was higher than that obtained from the model proposed by Comninellis. Electrolyses performed in phosphate buffer and in the presence of chloride ions resulted in faster COD and color removals in acid and neutral solutions, but in alkaline phosphate solution, a better performance in terms of TOC removal was obtained in the absence of chloride. Moreover, organochloride compounds were detected in all electrolyses performed in the presence of chloride. The AB-210 electrooxidation on BDD using phosphate as supporting electrolyte proved to be interesting since oxidizing species generated from phosphate ions were able to completely degrade the dye without producing organochloride compounds. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Vanadyl phosphate and its hybrid compounds have proven to undergo electrochemical intercalation and de-intercalation of lithium ions, which enables its use as cathode material for Li ion rechargeable batteries. In this context, vanadyl phosphate di-hydrate/polyaniline derivatives hybrid films were synthesized via the exfoliation and reconstruction approach in order to evaluate their potential use as cathode in ion lithium batteries. X-ray diffraction patterns indicate that the lamellar structure of the inorganic matrix is maintained, consistent with the topotactic process. In the scanning electron micrographs, hybrid films exhibit rough surface consisting of warped and cracked crystallites, quite different from vanadyl phosphate di-hydrate square platelets crystallites. Electrochemical evaluation using cyclic voltammetry and charge-discharge galvanostatic techniques shows small differences between the charge and the discharge curves, indicating an irreversibility of the hybrid systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
It has been suggested that phosphate binders may reduce the inflammatory state of hemodialysis (HD) patients. However, it is not clear whether it has any effect on oxidative stress. The objective of this study was to evaluate the effect of sevelamer hydrochloride (SH) and calcium acetate (CA) on oxidative stress and inflammation markers in HD patients. Hemodialysis patients were randomly assigned to therapy with SH (n=17) or CA (n=14) for 1 year. Before the initiation of therapy (baseline) and at 12 months, we measured in vitro reactive oxygen species (ROS) production by stimulated and unstimulated polymorphonuclear neutrophils and serum levels of tumor necrosis factor alpha, interleukin-10, C-reactive protein, and albumin. There was a significant reduction of spontaneous ROS production in both groups after 12 months of therapy. There was a significant decrease of Staphylococcus aureus stimulated ROS production in the SH group. There was a significant increase in albumin serum levels only in the SH group. In the SH group, there was also a decrease in the serum levels of tumor necrosis factor alpha and C-reactive protein. Our results suggest that compared with CA treatment, SH may lead to a reduction in oxidative stress and inflammation. Therefore, it is possible that phosphate binders exert pleiotropic effects on oxidative stress and inflammation, which could contribute toward decreasing endothelial injury in patients in HD.
Resumo:
Background and Aims: Calcium-containing phosphate binders have been shown to increase the progression of vascular calcification in hemodialysis patients. This is a prospective study that compares the effects of calcium acetate and sevelamer on coronary calcification (CAC) and bone histology. Methods: 101 hemodialysis patients were randomized for each phosphate binder and submitted to multislice coronary tomographies and bone biopsies at entry and 12 months. Results: The 71 patients who concluded the study had similar baseline characteristics. On follow-up, the sevelamer group had higher levels of intact parathyroid hormone (498 +/- 352 vs. 326 +/- 236 pg/ml, p = 0.017), bone alkaline phosphatase (38 +/- 24 vs. 28 +/- 15 U/l, p = 0.03) and deoxypyridinoline (135 +/- 107 vs. 89 +/- 71 nmol/l, p = 0.03) and lower LDL cholesterol (74 +/- 21 vs. 91 +/- 28 mg/dl, p = 0.015). Phosphorus (5.8 +/- 1.0 vs. 6 +/- 1.0 mg/dl, p = 0.47) and calcium (1.27 +/- 0.07 vs. 1.23 +/- 0.08 mmol/l, p = 0.68) levels did not differ between groups. CAC progression (35 vs. 24%, p = 0.94) and bone histological diagnosis at baseline and 12 months were similar in both groups. Patients of the sevelamer group with a high turnover at baseline had an increase in bone resorption (eroded surface, ES/BS = 9.0 +/- 5.9 vs. 13.1 +/- 9.5%, p = 0.05), whereas patients of both groups with low turnover at baseline had an improvement in bone formation rate (BFR/BS = 0.015 +/- 0.016 vs. 0.062 +/- 0.078, p = 0.003 for calcium and 0.017 +/- 0.016 vs. 0.071 +/- 0.084 mu m(3)/mu m(2)/day, p = 0.010 for sevelamer). Conclusions: There was no difference in CAC progression or changes in bone remodeling between the calcium and the sevelamer groups. Copyright (C) 2008 S. Karger AG, Basel
Resumo:
Background: Fibroblast growth factor 23 (FGF23) concentrations increase early in chronic kidney disease (CKD), and the influence of current CKD-mineral and bone disorder (MBD) therapies on serum FGF23 levels is still under investigation. Methods: In this post-hoc analysis of a randomized clinical trial, phosphate binders and calcitriol were washed out of 72 hemodialysis patients who were then submitted to bone biopsy, coronary tomography and biochemical measures, including FGF23. They were randomized to receive sevelamer or calcium acetate for 1 year and the prescription of calcitriol and the calcium concentration in the dialysate were adjusted according to serum calcium, phosphate and PTH and bone biopsy diagnosis. Results: At baseline, bone biopsy showed that 58.3% had low-turnover bone disease, whereas 38.9% had high-turnover bone disease, with no significant differences between them with regard to FGF23. Median baseline FGF23 serum levels were elevated and correlated positively with serum phosphate. After 1 year, serum FGF23 decreased significantly. Repeated measures ANOVA analysis showed that the use of a 3.5-mEq/l calcium concentration in the dialysate, as well as the administration of calcitriol and a calcium-based phosphate binder were associated with higher final serum FGF23 levels. Conclusions: Taken together, our results confirm that the current CKD-MBD therapies have an effect on serum levels of FGF23. Since FGF23 is emerging as a potential treatment target, our findings should be taken into account in the decision on how to manage CKD-MBD therapy. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Hypothesis: This study aimed to evaluate the biocompatibility of alpha-tricalcium phosphate bone cement in the obliteration of the mastoid cavity in guinea pigs. Background: Treatment with open cavity mastoidectomy can present poor functional results in chronic otitis media with cholesteatoma, especially if the cavity is large. Partial or total obliteration of the cavity can overcome these problems. Alpha-tricalcium phosphate bone cement has physicochemical characteristics that suggest its potential in mastoid cavity obliteration. Materials and Methods: Twenty guinea pigs were studied. All animals underwent surgery involving the dorsal tympanic bulla. In the study group animals (n = 10), mastoid cavity obliteration was performed with alpha-tricalcium phosphate bone cement. In the control group animals (n = 10), the cavity was left unfilled. On postoperative day 60, the animals were sacrificed and studied for signs of rejection of the material and other complications. Temporal bones were removed for histopathological study, in which the type and degree of inflammatory response, as well as the degree of ossification, were analyzed. Results: The mortality rate was the same in both groups. Deaths were attributed to anesthetic complications in the initial postoperative period. In the animals that survived, there were no complications, and there was good healing of the incision in both groups. There were no clinical signs of rejection of the material, and the histopathological analysis of the cement group revealed no signs of foreign body reaction (inflammatory response). Conclusion: Alpha-tricalcium phosphate bone cement is biocompatible in the mastoid cavity of guinea pigs.
Resumo:
Bone disease is a common disorder of bone remodeling and mineral metabolism, which affects patients with chronic kidney disease. Minor changes in the serum level of a given mineral can trigger compensatory mechanisms, making it difficult to evaluate the role of mineral disturbances in isolation. The objective of this study was to determine the isolated effects that phosphate and parathyroid hormone (PTH) have on bone tissue in rats. Male Wistar rats were subjected to parathyroidectomy and 5/6 nephrectomy or were sham-operated. Rats were fed diets in which the phosphate content was low, normal, or high. Some rats received infusion of PTH at a physiological rate, some received infusion of PTH at a supraphysiological rate, and some received infusion of vehicle only. All nephrectomized rats developed moderate renal failure. High phosphate intake decreased bone volume, and this effect was more pronounced in animals with dietary phosphate overload that received PTH infusion at a physiological rate. Phosphate overload induced hyperphosphatemia, hypocalcemia, and changes in bone microarchitecture. PTH at a supraphysiological rate minimized the phosphate-induced osteopenia. These data indicate that the management of uremia requires proper control of dietary phosphate, together with PTH adjustment, in order to ensure adequate bone remodeling.
Resumo:
Most patients with chronic kidney disease experience abnormalities in serum calcium, phosphorus, parathyroid hormone, and vitamin D metabolism. These can lead to vascular calcification (VC), which has been associated with increased risk for cardiovascular disease and mortality. Although hyperphosphatemia is believed to be a risk factor for mortality and VC, no randomized trial was ever designed to demonstrate that lowering phosphate reduces mortality. Nonetheless, binders have been used extensively, and the preponderance of evidence shows that sevelamer slows the development of VC whereas calcium salts do not. Four studies have demonstrated a slower progression of VC with sevelamer than with calcium-containing binders, although a fifth study showed nonsuperiority. Conversely, the results on mortality with sevelamer have been variable, and data on calcium-based binders are nonexistent. Improved survival with sevelamer was demonstrated in a small randomized clinical trial, whereas a larger randomized trial failed to show a benefit. In addition, preclinical models of renal failure and preliminary clinical data on hemodialysis patients suggest a potential benefit for bone with sevelamer. Meanwhile, several randomized and observational studies suggested no improvement in bone density and fracture rate, and a few noted an increase in total and cardiovascular mortality in the general population given calcium supplements. Although additional studies are needed, there are at least indications that sevelamer may improve vascular and bone health and, perhaps, mortality in hemodialysis patients, whereas data on calcium-based binders are lacking. Clin J Am Soc Nephrol 5: S31-S40, 2010. doi: 10.2215/CJN.05880809
Resumo:
Papaya (Carica papaya) is a climacteric fruit that undergoes dramatic pulp softening. Fruits sampled at three different conditions (natural ripening or after exposition to ethylene or 1-methylcyclopropene) were used for the isolation of cell wall polymers to find changes in their degradation pattern. Polymers were separated according to their solubility in water, CDTA, and 4 M alkali, and their monosaccharide compositions were determined. Water-soluble polymers were further characterized, and their increased yields in control and ethylene-treated fruit, in contrast to those that were treated with 1-MCP, indicated a strong association between fruit softening and changes in the cell wall water-soluble polysaccharide fraction. The results indicate that the extensive softening in the pulp of ripening papayas is a consequence of solubilization of large molecular mass galacturonans from the pectin fraction of the cell wall. This process seems to be dependent on the levels of ethylene, and it is likely that the releasing of galacturonan chains results from an endo acting polygalacturonase.