949 resultados para oxygen uptake rate
Resumo:
Petroleum Refinery wastewaters (PRW) have hart-to-degrade compounds, such as: phenols, ammonia, cyanides, sulfides, oils and greases and the mono and polynuclear aromatic hydrocarbons: benzene, toluene and xylene (BTX), acenaphthene, nitrobenzene and naphtalene. It is known that the microrganisms activity can be reduced in the presence of certain substances, adversely affecting the biological process of wastewater treatment. This research was instigated due the small number of studies regarding to this specific topic in the avaiable literature. This body of work ims to evaluate the effect of toxic substances on the biodegradability of the organic material found in PRW. Glucose was chosen as the model substrate due to its biodegradable nature. This study was divided into three parts: i) a survey of recalcitants compounds and the removal of phenol by using both biological and photochemical-biological processes; ii) biomass aclimation and iii) evaluation of the inhibitory effect certain compounds have on glucose biodegradation. The phenol degradation experiments were carried out in an activity sludge system and in a photochemical reactor. The results showed the photochemical-biological process to be more effective on phenol degradation, suggesting the superioruty of a combined photochemical-biological treatment when compared with a simple biological process for phenol removal from industry wastewaters. For the acclimation step, was used an activated sludge from industrial wastewaters. A rapid biomass aclimation to a synthetic solution composed of the main inhibitory compouns fpund in a PRW was obtained using the following operation condition: (pH = 7,0; DO ≥ 2,0 mg/L; RS = 20 days e qH = 31,2 and 20,4 hours), The last part was consisted of using respirometry evaluation toxicity effects of selected compounds over oxygen uptake rate to adaptated and non adaptated biomass in the presence of inhibitory compounds. The adaptated sludge showed greater degration capacity, with lower sensibility to toxic effects. The respirometry has proved to be very practical, as the techiniques used were simple and rapid, such as: Chemical Oxygen Demand (COD), Dissolved Oxygen (DO), and Volatile Suspended Solids (VSS). Using the latter it is possible to perform sludge selection to beggingthe process; thus allowing its use for aerobic treatment system`s behacior prediction
Resumo:
The aim of this research was the development of a procedure to measure biological kinetics of organic matter oxidation and nitrification in constructed wetland, by using respirometric techniques. Columns simulating cores of vertical subsurface flow systems were investigated. The oxygen uptake rate (OUR) of the columns was calculated on the basis of the difference of DO concentrations measured continuously at the top and at the bottom of the column. From the respirogram, the following kinetic parameters have been evaluated: maximum rate of oxidation of readily biodegradable COD, maximum rate of nitrification, endogenous respiration of the biomass grown inside the bed. In order to improve the interpretation of the respirograms, additional respirometric tests were carried out on the wetland columns by using pure substrates, such as acetate (carbon source) and ammonium (substrate for nitrification). The kinetic parameters obtained from respirograms can be useful for control and design of constructed wetlands or for improving nutrient and carbon mass balances.
Resumo:
Biochemical composition, feeding and oxygen uptake rate of mass planktic copepod Calanoides carinatus were studied off the coast of Namibia in January 1986. Population of this species in the area had two parts: the surface group inhabiting the 0-100 m layer and the deep part inhabiting depths greater than 200 m. Individuals in the surface and deep parts of the population differed in food content of guts, lipid content of bodies, oxygen uptake rate and behavior. Differences in biochemical composition and rate of physiological processes indicate that individuals in the deep part of the population are in diapause. Nature of changes in biochemical composition of C. carinatus in surface and deep waters in relation to life cycle characteristics in upwelling waters are discussed.
Resumo:
The growth, maintenance and lysis processes of Nitrobacter were characterised. A Nitrobacter culture was enriched in a sequencing batch reactor (SBR). Fluorescent in situ hybridisation showed that Nitrobacter constituted 73% of the bacterial population. Batch tests were carried out to measure the oxygen uptake rate and/or nitrite consumption rate when both nitrite and CO2 were in excess, and in the absence of either of these two substrates. The results obtained, along with the SBR performance data, allowed the determination of the maintenance coefficient and in situ cell lysis rate of Nitrobacter. Nitrobacter spends a significant amount of energy for maintenance, which varies considerably with the specific growth rate. At maximum growth, Nitrobacter consume nitrite at a rate of 0.042 mgN/mgCOD(biomass)center dot h for maintenance purposes, which increases more than threefold to 0.143 mgN/mgCOD(biomass)center dot h in the absence of growth. In the SBR, where Nitrobacter grew at 40% of its maximum growth rate, a maintenance coefficient of 0.113 mgN/mgCOD center dot h was found, resulting in 42% of the total amount of nitrite being consumed for maintenance. The above three maintenance coefficient values obtained at different growth rates appear to support the maintenance model proposed in Pirt (1982). The in situ lysis rate of Nitrobacter was determined to be 0.07/day under aerobic conditions at 22 C and pH 7.3. Further, the maximum specific growth rate of Nitrobacter was estimated to be 0.02/h (0.48/day). The affinity constant of Nitrobacter with respect to nitrite was determined to be 1.50 mgNO(2)(-)-N/L, independent of the presence or absence of CO2. (c) 2006 Wiley Periodicals, Inc.
Resumo:
A novel method that relies on the decoupling of the energy production and biosynthesis processes was used to characterise the maintenance, cell lysis and growth processes of Nitrosomonas sp. A Nitrosolnonas culture was enriched in a sequencing batch reactor (SBR) with ammonium as the sole energy source. Fluorescent in situ hybridization (FISH) showed that Nitrosomonas bound to the NEU probe constituted 82% of the bacterial population, while no other known ammonium or nitrite oxidizing bacteria were detected. Batch tests were carried out under conditions that both ammonium and CO, were in excess, and in the absence of one of these two substrates. The oxygen uptake rate and nitrite production rate were measured during these batch tests. The results obtained from these batch tests, along with the SBR performance data, allowed the determination of the maintenance coefficient and the in situ cell lysis rate, as well as the maximum specific growth rate of the Nitrosomonas culture. It is shown that, during normal growth, the Nitrosomonas culture spends approximately 65% of the energy generated for maintenance. The maintenance coefficient was determined to be 0.14 - 0.16 mgN mgCOD(biomass)(-1) h(-1), and was shown to be independent of the specific growth rate. The in situ lysis rate and the maximum specific growth rate of the Nitrosomonas culture were determined to be 0.26 and 1.0 day(-1) (0.043 h(-1)), respectively, under aerobic conditions at 30 degrees C and pH7. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
1. Mytilus edulis acclimated its rates of oxygen consumption when maintained at reduced oxygen tensions for periods in excess of five days. 2. Acclimation was complete down to approximately 55 mm Hg PO2 at slightly lower oxygen tensions (51, 49 and 43 mm Hg) acclimation was complete in one experiment and partial in two others. 3. The capacity to acclimate oxygen consumption was not affected by a reduction in ration nor by an increase in temperature (10 to 22 °C). 4. Mussels that were acclimated to reduced oxygen tension (40–80 mm Hg), and then exposed to P O 2 of less than 20 mm Hg for two or five hours, had depressed rates of oxygen uptake when subsequently “recovered” to 40–80 mm Hg. 5. These results are discussed in the context of biochemical studies of anaerobic metabolism in mussels from the same experiments.
Resumo:
The dissipation rate of turbulent kinetic energy (epsilon) is a key parameter for mixing in surface aerators. In particular, determination epsilon across the impeller stream, where the most intensive mixing takes place, is essential to ascertain that an appropriate degree of mixing is achieved. Present work by using commercial software VisiMix (R) calculates the energy dissipation rate in geometrically similar unbaffled surface aeration systems in order to scale-up the oxygen transfer process. It is found that in geometrically similar system, oxygen transfer rate is uniquely correlated with dissipation rate of energy. Simulation or scale-up equation governing oxygen transfer rate and dissipation rate of energy has been developed in the present work.
Resumo:
The dissipation rate of turbulent kinetic energy(e)is a key parameter for mixing in surface aerators. In particular, determination e across the impeller stream, where the most intensive mixing takes place, is essential to ascertain that an appropriate degree of mixing is achieved. Present work by using commercial software VisiMix calculates the energy dissipation rate in geometrically similar unbaffled surface aeration systems in order to scale-up the oxygen transfer process. It is found that in geometrically similar system,oxygen transfer rate is uniquely correlated with dissipation rate of energy. Simulation or scale-up equation governing oxygen transfer rate and dissipation rate of energy has been developed in the present work.
Resumo:
The availability of oxygen has a major effect on all organisms. The yeast Saccharomyces cerevisiae is able to adapt its metabolism for growth in different conditions of oxygen provision, and to grow even under complete lack of oxygen. Although the physiology of S. cerevisiae has mainly been studied under fully aerobic and anaerobic conditions, less is known of metabolism under oxygen-limited conditions and of the adaptation to changing conditions of oxygen provision. This study compared the physiology of S. cerevisiae in conditions of five levels of oxygen provision (0, 0.5, 1.0, 2.8 and 20.9% O2 in feed gas) by using measurements on metabolite, transcriptome and proteome levels. On the transcriptional level, the main differences were observed between the three level groups, 0, 0.5 2.8 and 20.9% O2 which led to fully fermentative, respiro-fermentative and fully respiratory modes of metabolism, respectively. However, proteome analysis suggested post-transcriptional regulation at the level of 0.5 O2. The analysis of metabolite and transcript levels of central carbon metabolism also suggested post-transcriptional regulation especially in glycolysis. Further, a global upregulation of genes related to respiratory pathways was observed in the oxygen-limited conditions and the same trend was seen in the proteome analysis and in the activities of enzymes of the TCA cycle. The responses of intracellular metabolites related to central carbon metabolism and transcriptional responses to change in oxygen availability were studied. As a response to sudden oxygen depletion, concentrations of the metabolites of central carbon metabolism responded faster than the corresponding levels of gene expression. In general, the genome-wide transcriptional responses to oxygen depletion were highly similar when two different initial conditions of oxygen provision (20.9 and 1.0% O2) were compared. The genes related to growth and cell proliferation were transiently downregulated whereas the genes related to protein degradation and phosphate uptake were transiently upregulated. In the cultures initially receiving 1.0% O2, a transient upregulation of genes related to fatty acid oxidation, peroxisomal biogenesis, response to oxidative stress and pentose phosphate pathway was observed. Additionally, this work analysed the effect of oxygen on transcription of genes belonging to the hexose transporter gene family. Although the specific glucose uptake rate was highest in fully anaerobic conditions, none of the hxt genes showed highest expression in anaerobic conditions. However, the expression of genes encoding the moderately low affinity transporters decreased with the decreasing oxygen level. Thus it was concluded that there is a relative increase in high affinity transport in anaerobic conditions supporting the high uptake rate.
Resumo:
Thatcher, Rhys, et al., 'Influence of blood donation on O-2 uptake on-kinetics, peak O-2 uptake and time to exhaustion during severe-intensity cycle exercise in humans', Experimental Physiology (2006) 91(3) pp.499-509 RAE2008
Resumo:
Polyplacophoran molluscs (chitons) are phylogenetically ancient and morphologically constrained, yet multiple living species are often found co-occurring within widely overlapping ecological niches. This study used two sets of experiments to compare interspecific variation among co-occurring species in the North Atlantic (Ireland) and separately in the North Pacific (British Columbia, Canada) chiton faunas. A complementary review of historical literature on polyplacophoran physiology provides an overview of the high level of metabolic variability in this group of 'living fossils'. Species examined in de novo experiments showed significant variation in oxygen consumption both under air-saturated water conditions (normoxia), and in response to decreasing oxygen availability (hypoxia). Some species demonstrate an ability to maintain constant oxygen uptake rates despite hypoxia (oxyregulators), while others oxyconform, with uptake rate dependent on ambient oxygen tension. These organisms are often amalgamated in studies of benthic communities, yet show obvious physiological difference that may impact their response or tolerance to environmental change.
Resumo:
Purpose The purpose of the present study was to develop and describe a simple method to evaluate the rate of ion reabsorption of eccrine sweat glands in human using the measurement of galvanic skin conductance (GSC) and local sweating rate (SR). This purpose was investigated by comparing the SR threshold for increasing GSC with following two criteria of sweat ion reabsorption in earlier studies such as 1) the SR threshold for increasing sweat ion was at approximately 0.2 to 0.5 mg/cm2/min and 2) exercise-heat acclimation improved the sweat ion reabsorption ability and would increase the criteria 1. Methods Seven healthy non-heat-acclimated male subjects received passive heat treatment both before and after 7 days of cycling in hot conditions (50% maximum oxygen uptake, 60 min/day, ambient temperature 32°C, and 50% relative humidity). Results Subjects became partially heat-acclimated, as evidenced by the decreased end-exercise heart rate (p<0.01), rate of perceived exhaustion (p<0.01), and oesophageal temperature (p=0.07), without alterations in whole-body sweat loss, from the first to the last day of training. As hypothesised, we confirmed that the SR threshold for increasing GSC was near the predicted SR during passive heating before exercise heat acclimation, and increased significantly after training (0.19 ± 0.09 to 0.32 ± 0.10 mg/cm2/min, p<0.05). Conclusions The reproducibility of sweat ion reabsorption by the eccrine glands in the present study suggests that the relationship between GSC and SR can serve as a new index for assessing the maximum rate of sweat ion reabsorption of eccrine sweat glands in humans.
Resumo:
Oxidation of amorphous silicon (a-Si) nanoparticles grown by plasma-enhanced chemical vapor deposition were investigated. Their hydrogen content has a great influence on the oxidation rate at low temperature. When the mass gain is recorded during a heating ramp in dry air, an oxidation process at low temperature is identified with an onset around 250°C. This temperature onset is similar to that of hydrogen desorption. It is shown that the oxygen uptake during this process almost equals the number of hydrogen atoms present in the nanoparticles. To explain this correlation, we propose that oxidation at low temperature is triggered by the process of hydrogen desorption
Resumo:
A protocol of physical exercise, based on maximal oxygen uptake ((V) over dot(O2max)), for female rats before and during pregnancy was developed to evaluate the impact of a low-protein diet on oxygen consumption during gestation and growth rate of the offspring. Virgin female Wistar rats were divided into four groups as follows: untrained (NT, n = 5); trained (T, n = 5); untrained with low-protein diet (NT+LP, n = 5); and trained with low-protein diet (T+LP, n = 5). Trained rats were submitted to a protocol of moderate physical training on a treadmill over a period of 4 weeks (5 days week(-1) and 60 min day(-1), at 65% of (V) over dot(O2max)). At confirmation of pregnancy, the intensity and duration of the exercise was reduced. Low-protein groups received an 8% casein diet, and their peers received a 17% casein diet. The birthweight and growth rate of the pups up to the 90th day were recorded. Oxygen consumption ((V) over dot(O2)), CO(2) production and respiratory exchange ratio (RER) were determined using an indirect open-circuit calorimeter. Exercise training increased. (V) over dot(O2max) by about 20% when compared with the initial values (45.6 +/- 1.0 ml kg(-1) min(-1)). During gestation, all groups showed a progressive reduction in the resting (V) over dot(O2) values. Dams in the NT+LP group showed lower values of resting (V) over dot(O2) than those in the NT group. The growth rate of pups from low-protein-fed mothers was around 50% lower than that of their respective controls. The T group showed an increase in body weight from the 60th day onwards, while the NT+LP group presented a reduced body weight from weaning onwards. In conclusion, physical training attenuated the impact of the low- protein
Resumo:
The jeju is a teleost fish with bimodal respiration that utilizes a modified swim bladder as an air-breathing organ (ABO). Like all air-breathing fish studied to date, jeju exhibit pronounced changes in heart rate (f(H)) during air-breathing events, and it is believed that these may facilitate oxygen uptake (M-O2) from the ABO. The current study employed power spectral analysis (PSA) of f(H) patterns, coupled with instantaneous respirometry, to investigate the autonomic control of these phenomena and their functional significance for the efficacy of air breathing. The jeju obtained less than 5% of total M-O2 (M-tO2) from air breathing in normoxia at 26 degrees C, and PSA of beat-to-beat variability in fH revealed a pattern similar to that of unimodal water-breathing fish. In deep aquatic hypoxia (water P-O2=1 kPa) the jeju increased the frequency of air breathing (f(AB)) tenfold and maintained M-tO2 unchanged from normoxia. This was associated with a significant increase in heart rate variability (HRV), each air breath (AB) being preceded by a brief bradycardia and then followed by a brief tachycardia. These f(H) changes are qualitatively similar to those associated with breathing in unimodal air-breathing vertebrates. Within 20 heartbeats after the AB, however, a beat-to-beat variability in f(H) typical of water-breathing fish was re-established. Pharmacological blockade revealed that both adrenergic and cholinergic tone increased simultaneously prior to each AB, and then decreased after it. However, modulation of inhibitory cholinergic tone was responsible for the major proportion of HRV, including the precise beat-to-beat modulation of f(H) around each AB. Pharmacological blockade of all variations in f(H) associated with air breathing in deep hypoxia did not, however, have a significant effect upon f(AB) or the regulation of M-tO2. Thus, the functional significance of the profound HRV during air breathing remains a mystery.