994 resultados para modèles non linéaires


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Les logiciels utilisés sont Splus et R.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

En écologie, dans le cadre par exemple d’études des services fournis par les écosystèmes, les modélisations descriptive, explicative et prédictive ont toutes trois leur place distincte. Certaines situations bien précises requièrent soit l’un soit l’autre de ces types de modélisation ; le bon choix s’impose afin de pouvoir faire du modèle un usage conforme aux objectifs de l’étude. Dans le cadre de ce travail, nous explorons dans un premier temps le pouvoir explicatif de l’arbre de régression multivariable (ARM). Cette méthode de modélisation est basée sur un algorithme récursif de bipartition et une méthode de rééchantillonage permettant l’élagage du modèle final, qui est un arbre, afin d’obtenir le modèle produisant les meilleures prédictions. Cette analyse asymétrique à deux tableaux permet l’obtention de groupes homogènes d’objets du tableau réponse, les divisions entre les groupes correspondant à des points de coupure des variables du tableau explicatif marquant les changements les plus abrupts de la réponse. Nous démontrons qu’afin de calculer le pouvoir explicatif de l’ARM, on doit définir un coefficient de détermination ajusté dans lequel les degrés de liberté du modèle sont estimés à l’aide d’un algorithme. Cette estimation du coefficient de détermination de la population est pratiquement non biaisée. Puisque l’ARM sous-tend des prémisses de discontinuité alors que l’analyse canonique de redondance (ACR) modélise des gradients linéaires continus, la comparaison de leur pouvoir explicatif respectif permet entre autres de distinguer quel type de patron la réponse suit en fonction des variables explicatives. La comparaison du pouvoir explicatif entre l’ACR et l’ARM a été motivée par l’utilisation extensive de l’ACR afin d’étudier la diversité bêta. Toujours dans une optique explicative, nous définissons une nouvelle procédure appelée l’arbre de régression multivariable en cascade (ARMC) qui permet de construire un modèle tout en imposant un ordre hiérarchique aux hypothèses à l’étude. Cette nouvelle procédure permet d’entreprendre l’étude de l’effet hiérarchisé de deux jeux de variables explicatives, principal et subordonné, puis de calculer leur pouvoir explicatif. L’interprétation du modèle final se fait comme dans une MANOVA hiérarchique. On peut trouver dans les résultats de cette analyse des informations supplémentaires quant aux liens qui existent entre la réponse et les variables explicatives, par exemple des interactions entres les deux jeux explicatifs qui n’étaient pas mises en évidence par l’analyse ARM usuelle. D’autre part, on étudie le pouvoir prédictif des modèles linéaires généralisés en modélisant la biomasse de différentes espèces d’arbre tropicaux en fonction de certaines de leurs mesures allométriques. Plus particulièrement, nous examinons la capacité des structures d’erreur gaussienne et gamma à fournir les prédictions les plus précises. Nous montrons que pour une espèce en particulier, le pouvoir prédictif d’un modèle faisant usage de la structure d’erreur gamma est supérieur. Cette étude s’insère dans un cadre pratique et se veut un exemple pour les gestionnaires voulant estimer précisément la capture du carbone par des plantations d’arbres tropicaux. Nos conclusions pourraient faire partie intégrante d’un programme de réduction des émissions de carbone par les changements d’utilisation des terres.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we propose exact likelihood-based mean-variance efficiency tests of the market portfolio in the context of Capital Asset Pricing Model (CAPM), allowing for a wide class of error distributions which include normality as a special case. These tests are developed in the frame-work of multivariate linear regressions (MLR). It is well known however that despite their simple statistical structure, standard asymptotically justified MLR-based tests are unreliable. In financial econometrics, exact tests have been proposed for a few specific hypotheses [Jobson and Korkie (Journal of Financial Economics, 1982), MacKinlay (Journal of Financial Economics, 1987), Gib-bons, Ross and Shanken (Econometrica, 1989), Zhou (Journal of Finance 1993)], most of which depend on normality. For the gaussian model, our tests correspond to Gibbons, Ross and Shanken’s mean-variance efficiency tests. In non-gaussian contexts, we reconsider mean-variance efficiency tests allowing for multivariate Student-t and gaussian mixture errors. Our framework allows to cast more evidence on whether the normality assumption is too restrictive when testing the CAPM. We also propose exact multivariate diagnostic checks (including tests for multivariate GARCH and mul-tivariate generalization of the well known variance ratio tests) and goodness of fit tests as well as a set estimate for the intervening nuisance parameters. Our results [over five-year subperiods] show the following: (i) multivariate normality is rejected in most subperiods, (ii) residual checks reveal no significant departures from the multivariate i.i.d. assumption, and (iii) mean-variance efficiency tests of the market portfolio is not rejected as frequently once it is allowed for the possibility of non-normal errors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cet article illustre l’applicabilité des méthodes de rééchantillonnage dans le cadre des tests multiples (simultanés), pour divers problèmes économétriques. Les hypothèses simultanées sont une conséquence habituelle de la théorie économique, de sorte que le contrôle de la probabilité de rejet de combinaisons de tests est un problème que l’on rencontre fréquemment dans divers contextes économétriques et statistiques. À ce sujet, on sait que le fait d’ignorer le caractère conjoint des hypothèses multiples peut faire en sorte que le niveau de la procédure globale dépasse considérablement le niveau désiré. Alors que la plupart des méthodes d’inférence multiple sont conservatrices en présence de statistiques non-indépendantes, les tests que nous proposons visent à contrôler exactement le niveau de signification. Pour ce faire, nous considérons des critères de test combinés proposés initialement pour des statistiques indépendantes. En appliquant la méthode des tests de Monte Carlo, nous montrons comment ces méthodes de combinaison de tests peuvent s’appliquer à de tels cas, sans recours à des approximations asymptotiques. Après avoir passé en revue les résultats antérieurs sur ce sujet, nous montrons comment une telle méthodologie peut être utilisée pour construire des tests de normalité basés sur plusieurs moments pour les erreurs de modèles de régression linéaires. Pour ce problème, nous proposons une généralisation valide à distance finie du test asymptotique proposé par Kiefer et Salmon (1983) ainsi que des tests combinés suivant les méthodes de Tippett et de Pearson-Fisher. Nous observons empiriquement que les procédures de test corrigées par la méthode des tests de Monte Carlo ne souffrent pas du problème de biais (ou sous-rejet) souvent rapporté dans cette littérature – notamment contre les lois platikurtiques – et permettent des gains sensibles de puissance par rapport aux méthodes combinées usuelles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

40.00% 40.00%

Publicador:

Resumo:

L’incertitude associée à une mesure a pour origine d’une part la variabilité environnementale et d’autre part l’ensemble du processus d’acquisition depuis le prélèvement jusqu’à la saisie de la donnée dans une base. L’estimation de l'ensemble de cette variabilité est un exercice complexe à réaliser dans le cadre d’un plan d’expérience. En revanche, les séries temporelles présentent la caractéristique d’intégrer toutes les variabilités et ainsi l’analyse de ces séries en terme de signal et bruit doit permettre de quantifier l’amplitude des incertitudes. Toutefois, les séries temporelles d’observation présentent un ensemble de caractéristiques les rendant difficiles à analyser. Les modèles linaires dynamiques constituent une approche adaptée à ces données particulières en faisant l’hypothèse de paramètres variables dans le temps. Ainsi, l’objet du présent travail consiste à estimer les variances liées au processus d’observation à l’aide de modèles linéaires dynamiques. Plus particulièrement, les mesures considérées sont la chlorophylle a et l’abondance phytoplanctonique aux lieux de surveillance REPHY « Arcachon-Bouée- 7 » et « Teychan bis ». Les résultats montrent que pour la chlorophylle a, la variabilité d’observation est responsable de l’ordre de 80 % de la variabilité totale. Pour l’abondance phytoplanctonique, elle est également de 80 % à « Arcachon-Bouée 7 » mais de l’ordre de 70 % à « Teychan bis ». Ainsi la part de « bruit » est liée au lieu et au paramètre considéré. Exprimée en pourcentage de la médiane de la chlorophylle a, la variance d’observation place les bornes de l’intervalle de confiance à 95 % des observations à des valeurs de l’ordre de -40 % et +120 % de la médiane, l’intervalle étant sous estimé car ne prenant pas en compte la variabilité structurelle. Pour l’abondance phytoplanctonique en log10 cell./L, les ordres de grandeur correspondant en pourcentage de la moyenne sont de ± 13.5 %. Pour les deux paramètres, ces valeurs sont compatibles avec l’expérience des experts. Ainsi, l’approche mise en oeuvre s’est avérée riche d’enseignements en matière d’incertitude de mesure et les nombreuses améliorations méthodologiques envisagées ouvrent des perspectives fécondes à tout point de vue.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction : Les données probantes reconnaissent que les exercices constituent une modalité curative pour traiter la lombalgie non-aiguë. Or, les effets sont modestes, ce qui amène la communauté scientifique à se questionner, entre autre, sur le niveau d’adhésion des patients à leur programme d’exercices à domicile. Cette étude poursuit deux objectifs : (1) explorer l’association entre l’adhésion à un programme d’exercices à domicile et les variables de résultats (primaires : douleur, incapacité ; secondaires : les changements globaux, le sentiment d’efficacité personnelle, la détresse psychologique), (2) explorer l’association entre l’adhésion à ce programme et les principales variables biopsychosociales sur lesquelles le thérapeute peut agir, en utilisant un cadre théorique explicatif incluant : le modèle de peur-évitement, le modèle du sens commun et le concept de l’alliance de travail. Méthode : Une cohorte longitudinale de volontaires de 48 adultes ayant une lombalgie (> 4 semaines) a été recrutée. L’adhésion au programme d’exercices à domicile et les autres facteurs biopsychosociaux ont été mesurés par des questionnaires auto-administrés au début, après quatre semaines, à la fin des huit semaines de traitement et six mois plus tard. Des analyses univariées et multivariées ont été menées. Résultats : Pour le premier objectif, les modèles linéaires mixtes démontrent que l’adhésion est seulement associée aux variables de résultats secondaires. Pour le second objectif, 50 % de la variance de l’adhésion (ICC = 50,00, p < 0,001) a été expliquée par sept variables, les changements globaux ayant la plus forte association avec l’adhésion. Les changements globaux, à leur tour, ont été expliqués par cinq variables (ICC = 22,3, p = 0,028), les représentations ayant la plus forte association. Les représentations ont été expliquées par cinq variables pouvant être incluses dans le modèle peur-évitement (ICC = 49,2, p < 0,001). L’alliance de travail n’était pas associée à l’adhésion. Conclusion : Les variables de résultats secondaires devraient s’ajouter aux variables de résultats primaires dans les études portant sur l’adhésion aux exercices. Le modèle du sens commun a été utile pour expliquer les variables associées à l’adhésion. Le modèle de peur-évitement a été davantage utile pour expliquer les variables associées aux représentations qui sont au cœur du modèle du sens commun.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes finite-sample procedures for testing the SURE specification in multi-equation regression models, i.e. whether the disturbances in different equations are contemporaneously uncorrelated or not. We apply the technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] to obtain exact tests based on standard LR and LM zero correlation tests. We also suggest a MC quasi-LR (QLR) test based on feasible generalized least squares (FGLS). We show that the latter statistics are pivotal under the null, which provides the justification for applying MC tests. Furthermore, we extend the exact independence test proposed by Harvey and Phillips (1982) to the multi-equation framework. Specifically, we introduce several induced tests based on a set of simultaneous Harvey/Phillips-type tests and suggest a simulation-based solution to the associated combination problem. The properties of the proposed tests are studied in a Monte Carlo experiment which shows that standard asymptotic tests exhibit important size distortions, while MC tests achieve complete size control and display good power. Moreover, MC-QLR tests performed best in terms of power, a result of interest from the point of view of simulation-based tests. The power of the MC induced tests improves appreciably in comparison to standard Bonferroni tests and, in certain cases, outperforms the likelihood-based MC tests. The tests are applied to data used by Fischer (1993) to analyze the macroeconomic determinants of growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we develop finite-sample inference procedures for stationary and nonstationary autoregressive (AR) models. The method is based on special properties of Markov processes and a split-sample technique. The results on Markovian processes (intercalary independence and truncation) only require the existence of conditional densities. They are proved for possibly nonstationary and/or non-Gaussian multivariate Markov processes. In the context of a linear regression model with AR(1) errors, we show how these results can be used to simplify the distributional properties of the model by conditioning a subset of the data on the remaining observations. This transformation leads to a new model which has the form of a two-sided autoregression to which standard classical linear regression inference techniques can be applied. We show how to derive tests and confidence sets for the mean and/or autoregressive parameters of the model. We also develop a test on the order of an autoregression. We show that a combination of subsample-based inferences can improve the performance of the procedure. An application to U.S. domestic investment data illustrates the method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La causalité au sens de Granger est habituellement définie par la prévisibilité d'un vecteur de variables par un autre une période à l'avance. Récemment, Lutkepohl (1990) a proposé de définir la non-causalité entre deux variables (ou vecteurs) par la non-prévisibilité à tous les délais dans le futur. Lorsqu'on considère plus de deux vecteurs (ie. lorsque l'ensemble d'information contient les variables auxiliaires), ces deux notions ne sont pas équivalentes. Dans ce texte, nous généralisons d'abord les notions antérieures de causalités en considérant la causalité à un horizon donné h arbitraire, fini ou infini. Ensuite, nous dérivons des conditions nécessaires et suffisantes de non-causalité entre deux vecteurs de variables (à l'intérieur d'un plus grand vecteur) jusqu'à un horizon donné h. Les modèles considérés incluent les autoregressions vectorielles, possiblement d'ordre infini, et les modèles ARIMA multivariés. En particulier, nous donnons des conditions de séparabilité et de rang pour la non-causalité jusqu'à un horizon h, lesquelles sont relativement simples à vérifier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The GARCH and Stochastic Volatility paradigms are often brought into conflict as two competitive views of the appropriate conditional variance concept : conditional variance given past values of the same series or conditional variance given a larger past information (including possibly unobservable state variables). The main thesis of this paper is that, since in general the econometrician has no idea about something like a structural level of disaggregation, a well-written volatility model should be specified in such a way that one is always allowed to reduce the information set without invalidating the model. To this respect, the debate between observable past information (in the GARCH spirit) versus unobservable conditioning information (in the state-space spirit) is irrelevant. In this paper, we stress a square-root autoregressive stochastic volatility (SR-SARV) model which remains true to the GARCH paradigm of ARMA dynamics for squared innovations but weakens the GARCH structure in order to obtain required robustness properties with respect to various kinds of aggregation. It is shown that the lack of robustness of the usual GARCH setting is due to two very restrictive assumptions : perfect linear correlation between squared innovations and conditional variance on the one hand and linear relationship between the conditional variance of the future conditional variance and the squared conditional variance on the other hand. By relaxing these assumptions, thanks to a state-space setting, we obtain aggregation results without renouncing to the conditional variance concept (and related leverage effects), as it is the case for the recently suggested weak GARCH model which gets aggregation results by replacing conditional expectations by linear projections on symmetric past innovations. Moreover, unlike the weak GARCH literature, we are able to define multivariate models, including higher order dynamics and risk premiums (in the spirit of GARCH (p,p) and GARCH in mean) and to derive conditional moment restrictions well suited for statistical inference. Finally, we are able to characterize the exact relationships between our SR-SARV models (including higher order dynamics, leverage effect and in-mean effect), usual GARCH models and continuous time stochastic volatility models, so that previous results about aggregation of weak GARCH and continuous time GARCH modeling can be recovered in our framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent work shows that a low correlation between the instruments and the included variables leads to serious inference problems. We extend the local-to-zero analysis of models with weak instruments to models with estimated instruments and regressors and with higher-order dependence between instruments and disturbances. This makes this framework applicable to linear models with expectation variables that are estimated non-parametrically. Two examples of such models are the risk-return trade-off in finance and the impact of inflation uncertainty on real economic activity. Results show that inference based on Lagrange Multiplier (LM) tests is more robust to weak instruments than Wald-based inference. Using LM confidence intervals leads us to conclude that no statistically significant risk premium is present in returns on the S&P 500 index, excess holding yields between 6-month and 3-month Treasury bills, or in yen-dollar spot returns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose several finite-sample specification tests for multivariate linear regressions (MLR) with applications to asset pricing models. We focus on departures from the assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case of the Student t distribution). The multivariate tests are based on properly standardized multivariate residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial correlation, tests for multivariate GARCH and sign-type tests against general dependencies and asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) which consist in combining univariate specification tests. Specifically, we combine tests across equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based tests are not pivotal, we apply the “maximized MC” (MMC) test method [Dufour (2002)], where the MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with respect to these nuisance parameters) to control the test’s significance level. The tests proposed are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results reveal the following. Whereas univariate exact tests indicate significant serial correlation, asymmetries and GARCH in some equations, such effects are much less prevalent once error cross-equation covariances are accounted for. In addition, significant departures from the i.i.d. hypothesis are less evident once we allow for non-Gaussian errors.