971 resultados para low threshold pumping


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report what we believe to be the first demonstration of laser operation with a novel laser material of Yb3(+) -doped Gd-2 SiO2 (Yb: GSO) pumped by a laser diode at 940 nm. We obtained a low lasing threshold of 1.27 kW/cm(2) with the center wavelength of 1090 nm, which is lower than the value of 1.53 kW/cm(2) predicted for Yb: YAG. The maximal output power of 360 mW was obtained with a 2% output, which corresponds to a slope efficiency up to 19%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

基于975nm激发的室温下荧光光谱测量,系统地研究了在新型钠、镱共掺的氟化钙晶体中钠离子的作用机理,分析了掺钠离子浓度与激光阈值的关系,获得了具有最低激光阈值的掺杂浓度优化配比.激光实验表明对于2%Yb^3+离子浓度的氟化钙,掺入3%的钠离子能够获得最低阈值的激光运转,这与理论和荧光分析完全一致.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It has long been known that neurons in the brain are not physiologically homogeneous. In response to current stimulus, they can fire several distinct patterns of action potentials that are associated with different physiological classes ranging from regular-spiking cells, fast-spiking cells, intrinsically bursting cells, and low-threshold cells. In this work we show that the high degree of variability in firing characteristics of action potentials among these cells is accompanied with a significant variability in the energy demands required to restore the concentration gradients after an action potential. The values of the metabolic energy were calculated for a wide range of cell temperatures and stimulus intensities following two different approaches. The first one is based on the amount of Na+ load crossing the membrane during a single action potential, while the second one focuses on the electrochemical energy functions deduced from the dynamics of the computational neuron models. The results show that the thalamocortical relay neuron is the most energy-efficient cell consuming between 7 and 18 nJ/cm(2) for each spike generated, while both the regular and fast spiking cells from somatosensory cortex and the intrinsically-bursting cell from a cat visual cortex are the least energy-efficient, and can consume up to 100 nJ/cm(2) per spike. The lowest values of these energy demands were achieved at higher temperatures and high external stimuli.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to understand how the performance of a liquid-crystal laser depends on the physical properties of the low molar mass nematic host, we have studied the energy threshold and slope efficiency of ten optically pumped liquid-crystal lasers based on different hosts. Specifically, this leads to a variation in the birefringence, the orientational order parameter, and the order parameter of the transition dipole moment of the dye. It is found that low threshold energies and high slope efficiencies correlate with high order parameters and large birefringences. To a first approximation this can be understood by considering analytical expressions for the threshold and slope efficiency, which are derived from the space-independent rate equations for a two-level system, in terms of the macroscopic liquid crystal properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study we have fabricated eight different liquid-crystal lasers using the same gain medium but different homologues from the bimesogenic series alpha-(2',4-difluorobiphenyl-4'-yloxy)-omega-(4-cyanobiphenyl-4'-yloxy)alkanes, whereby the number of methylene units in the spacer chain varied from n=5 to n=12. To quantify the performance of these lasers, the threshold energy and the slope efficiency were extracted from the input-output characteristics of each laser. A clear odd-even effect was observed when both the excitation threshold and the slope efficiency were plotted as a function of the number of methylene units in the spacer chain. In all cases, the bimesogen lasers for which n is even exhibit lower threshold energies and higher slope efficiencies than those for which n is odd. These results are then interpreted in terms of the macroscopic physical properties of the liquid-crystalline compounds. In accordance with a previous study [S. M. Morris, A. D. Ford, M. N. Pivnenko, O. Hadeler, and H. J. Coles, Phys. Rev. E. 74, 061709 (2006)], a combination of a large birefringence and high order parameters are found, in the most part, to correlate with low-threshold energy and high slope efficiency. This indicates that the threshold and slope efficiency are dominated by the host macroscopic properties as opposed to intermolecular interactions between the dye and the liquid crystal. However, certain differences in the slope efficiency could not be explained by the birefringence and order parameter values alone. Instead, we find that the slope efficiency is further increased by increasing the elastic constants of the liquid-crystal host so as to decrease the scattering losses incurred by local distortions in the director field under high-energy optical excitation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper discusses the shrimp culture practices of Thailand, the top producing country of cultured shrimp. These shrimp culture techniques include the use of reservoirs for better waste management, utilization of undiluted seawater for culture, low-cost pumping systems, measures to neutralize acid sulfate soils, proper treatment of pond bottom, and solutions to disease problems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The self-organization of the helical structure of chiral nematic liquid crystals combined with their sensitivity to electric fields makes them particularly interesting for low-threshold, wavelength tunable laser devices. We have studied these organic lasers in detail, ranging from the influence specific macroscopic properties, such as birefringence and order parameter, have on the output characteristics, to practical systems in the form of two-dimensional arrays, double-pass geometries and paintable lasers. Furthermore, even though chiral nematics are responsive to electric fields there is no facile means by which the helix periodicity can be adjusted, thereby allowing laser wavelength tuning, without adversely affecting the optical quality of the resonator. Therefore, in addition to studying the liquid crystal lasers, we have focused on finding a novel method with which to alter the periodicity of a chiral nematic using electric fields without inducing defects and degrading the optical quality factor of the resonator. This paper presents an overview of our research, describing (i) the correlation between laser output and material properties,(ii) the importance of the gain medium,(iii) multicolor laser arrays, and (iv) high slope efficiency (>60%) silicon back-plane devices. Overall we conclude that these materials have great potential for use in versatile organic laser systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper examines the possibility of using a background gas medium to enhance the current available from low threshold carbon cathodes. The field emission current is used to initiate a plasma in the gas medium, and thereby achieve a current multiplication effect. Results on the variation of anode current as a function of electric field and gas pressure are presented. These are compared with model calculations to verify the principles of operation. The influence of ion bombardment on the long term performance thin film carbon cathodes is examined for He and Ar multiplication plasmas. A measure of the influence of current multiplication on display quality is presented by examining light output from two standard low voltage phosphors. Also studied are the influence of doping the carbon with N to lower the threshold voltage for emission as well as the consequent impact on anode current from the plasma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Triisopropylsilylethynyl-pentacene (TIPS-PEN) has proven to be one of the most promising small molecules in the field of molecular electronics, due to its unique features in terms of stability, performance and ease of processing. Among a wide variety of well-established techniques for the deposition of TIPS-PEN, blade-metered methods have recently gained great interest towards the formation of uniform crystalline films over a large area. Following this rationale, we herein designed a versatile approach based on blade-coating, which overcomes the problem of anisotropic crystal formation by manipulating the solvent evaporation behaviour, in a way that brings about a preferential degree of crystal orientation. The applicability of this method was evaluated by fabricating field-effect transistors on glass as well as on silicon dioxide/silicon (SiO2/Si) substrates. Interestingly, in an attempt to improve the rheological and wetting behaviour of the liquid films on the SiO2/Si substrates, we introduced a polymeric interlayer of polystyrene (PS) or polymethylmethacrylate (PMMA) which concurrently acts as passivation and crystallization assisting layer. In this case, the synergistic effects of the highly-ordered crystalline structure and the oxide surface modification were thoroughly investigated. The overall performance of the fabricated devices revealed excellent electrical characteristics, with high saturation mobilities up to 0.72 cm2 V-1 s-1 (on glass with polymeric dielectric), on/off current ratio >104 and low threshold voltage values (<-5 V). This journal is © the Partner Organisations 2014.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We demonstrate a low-threshold and efficient diode-pumped passively continuous wave (CW) mode-locked Nd:GdVO4 laser with a reflective semiconductor saturable absorber mirror (SESAM). The threshold for the continuous wave was 0.36 W, and it is the lowest threshold for a continuous wave in a passively mode-locked Nd:GdVO4 laser to our knowledge. The maximum average output power of 1.82 W was obtained at a pump power of 6.65 W with a slope efficiency of about 29%. The CW mode-locked pulse duration was measured to be about 10.5 ps with a 116-MHz repetition rate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We designed a two-dimensional coupled photonic crystal resonator array with hexagonal lattice. The calculation by plane-wave-expansion method shows that the dispersion curve of coupled cavity modes in the bandgap are much flattened in all directions in the reciprocal space. We simulated the transmission spectra of transverse electric (TE) wave along the Gamma K direction. Compared with the PC single cavity structure, the transmission ratio of the coupled cavity array increases more than three orders of magnitude, while the group velocity decreases to below 1/10, reaching 0.007c. The slow wave effect has potential application in the field of miniaturized tunable optical delay components and low-threshold photonic crystal lasers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Optically pumped GaN-based vertical cavity surface-emitting laser (VCSEL) with two Ta2O5/SiO2 dielectric distributed Bragg reflectors (DBRs) was fabricated via a simplifled procedure direct deposition of the top DBR onto the GaN surface exposed after substrate removal and no use of etching and polishing processes. Blue-violet lasing action was observed at a wavelength of 397.3 ran under optical pumping at room temperature with a threshold pumping energy density of about 71.5 mJ/cm(2). The laser action was further confirmed by a narrow emission linewidth of 0.13 nm and a degree of polarization of about 65%. The result suggests that practical blue-violet GaN-bsaed VCSEL can be realized by optimizing the laser lift-off technique for substrate removal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Unselective regrowth for fabricating 1.5-mu m InGaAsP multiple-quantum well (MQW) distributed-feedback (DFB) buried heterostructure (BH) lasers is developed. The experimental results exhibit superior characteristics, such as a low threshold of 8.5 mA, high slope efficiency of 0.55 mW/mA, circular-like far-field patterns, the narrow line-width of 2.5 MHz, etc. The high performance of the devices effectively proves the feasibility of the new method to fabricate buried heterostructure lasers. (c) 2006 Society of Photo-Optical Instrumentation Engineers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1.6-1.7 mu m highly strained InGaAs/InGaAsP distributed feedback lasers was grown and fabricated by low pressure mentalorganic chemical vapor deposition. High quality highly strained InGaAs/InP materials were obtained by using strain buffer layer. Four pairs of highly strained quantum wells were used in the devices and carrier blocking layer was used to improve the temperature characteristics of the devices. The uncoated 1.66 mu m and 1.74 mu m lasers with ridge wave guide 3 mu m wide have low threshold current (< 15mA) and high output power (> 14mW at 100mA). In the temperature range from 10 degrees C to 40 degrees C, the characteristic temperature T-0 of the 1.74 mu m laser is 57K, which is comparable to that of the 1.55 mu m-wavelength InGaAsP/InP-DFB laser.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A strained InGaAsP-InP multiple-quantum-well DFB laser monolithically integrated with electroabsorption modulator by ultra-low-pressure (22 mbar) selective-area-growth is presented. The integrated chip exhibits superior characteristics, such as low threshold current of 19 mA, single-mode operation around 1550 nm range with side-mode suppression ratio over 40 dB, and larger than 16 dB extinction ratio when coupled into a single-mode fiber. More than 10 GHz modulation bandwidth is also achieved. After packaged in a compact module, the device successfully performs 10-Gb/s NRZ transmission experiments through 53.3 km of standard fiber with 8.7 dB dynamic extinction ratio. A receiver sensitivity of -18.9 dBm at bit-error-rate of 10(-1)0 is confirmed. (c) 2005 Elsevier B.V. All rights reserved.