942 resultados para low index single crystal surfaces


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In situ FTIR spectroscopic and electrochemical data and ex situ (emersion) electron diffraction (LEED) and RHEED) and Auger spectroscopic data are presented on the structure and reactivity, with respect to the electro-oxidation of CO, of the Ru(0001) single-crystal surface in perchloric acid solution. In both the absence and the presence of adsorbed CO, the Ru(0001) electrode shows the potential-dependent formation of well-defined and ordered oxygen-containing adlayers. At low potentials (e.g., from -80 to +200 mV vs Ag/AgCl), a (2 × 2)-O phase, which is unreactive toward CO oxidation, is formed, in agreement with UHV studies. Increasing the potential results in the formation of (3 × 1) and (1 × 1) phases at 410 and 1100 mV, respectively, with a concomitant increase in the reactivity of the surface toward CO oxidation. Both linear (CO ) and three-fold-hollow (CO ) binding CO adsorbates (bands at 2000-2040 and 1770-1800 cm , respectively) were observed on the Ru(0001) electrode. The in situ FTIR data show that the adsorbed CO species remain in compact islands as CO oxidation proceeds, suggesting that the oxidation occurs at the boundaries between the CO and O domains. At low CO coverages, reversible relaxation (at lower potentials) and compression (at higher potentials) of the CO adlayer were observed and rationalized in terms of the reduction and formation of surface O adlayers. The data obtained from the Ru(0001) electrode are in marked contrast to those observed on polycrystalline Ru, where only linear CO is observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic properties of BaFe12O19 and BaFe10.2Sn0.74Co0.66O19 single crystals have been investigated in the temperature range (1.8 to 320 K) with a varying field from -5 to +5 T applied parallel and perpendicular to the c axis. Low-temperature magnetic relaxation, which is ascribed to the domain-wall motion, was performed between 1.8 and 15 K. The relaxation of magnetization exhibits a linear dependence on logarithmic time. The magnetic viscosity extracted from the relaxation data, decreases linearly as temperature goes down, which may correspond to the thermal depinning of domain walls. Below 2.5 K, the viscosity begins to deviate from the linear dependence on temperature, tending to be temperature independent. The near temperature independence of viscosity suggests the existence of quantum tunneling of antiferromagnetic domain wall in this temperature range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrared and polarized Raman spectra of Cu(HSeO3) 2 - H20 single crystal have been recorded and analysed. The appearance of non-degenerate Se-OH stretching vibrations in the ~x: and ~y: polarizations of Raman spectra indicate distortion of the HSeO~- ion in the Cu(HSeO3)2 - H20 crystal. The low wavenumber values obtained for the symmetric and asymmetric stretching vibrations of the HSeO 3 ion are consistent with the strong hydrogen bonding and the influence of Jahn-Teller distortion as predicted in X-ray diffraction data. The shifting of the stretching and bending vibrations of the hydroxyl groups and water molecules from the free state values also confirms the strong hydrogen bonding in this crystal. Broad bands observed for both stretching and bending regions become sharp in the Raman spectrum recorded at 77 K. A doublet appears for the Se-OH stretching mode at this temperature indicating the settling of protons in an ordered position and the absence of intrabond proton tunnelling

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Erbium-doped single crystal fibers, with low phonon energy and fairly high absorption and emission cross sections are interesting laser active media, for compact, near-infrared and/or upconversion lasers. In this work, high optical quality Er3+-doped CaNb2O6 and CaTa2O6 single crystal fibers were successfully grown by the versatile laser-heated pedestal growth technique, and characterized from the structural and spectroscopic points of view. The results indicate that these crystal fiber compositions, which had not been explored so far, offer potential applications, not only as laser active media, but also in other optical devices. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water-dispersed magnetite nanoparticle synthesis from iron(II) chloride in dimethyl sulfoxide (DMSO)-water solution at different DMSO-water ratios in alkaline medium was reported. TEM and XRD results suggest a single-crystal formation with mean particle size in the range 4-27 nm. Magnetic nanoparticles are formed by the oxidative hydrolysis reaction from green rust species that leads to FeOOH formation, followed by autocatalysis of the adsorbed available Fe(II) on the FeOOH surfaces. The available hydroxyl groups seem to be dependent on the DMSO-water ratio due to strong molecular interactions presented by the solvent mixture. Goethite phase on the magnetite surface was observed by XRD data only for sample synthesized in the absence of DMSO. In addition, cyclic voltammetry with carbon paste electroactive electrode (CV-CPEE) results reveal two reduction peaks near 0 and +400 mV associated with the presence of iron(III) in different chemical environments related to the surface composition of magnetite nanoparticles. The peak near +400 mV is related to a passivate thin layer surface such as goethite on the magnetite nanoparticle, assigned to the intensive hydrolysis reaction due to strong interactions between DMSO-water molecules in the initial solvent mixture that result in a hydroxyl group excess in the medium. Pure magnetite phase was only observed in the samples prepared at 30% (30W) and 80% (80W) water in DMSO in agreement with the structured molecular solvent cluster formation. The goethite phase present on the, magnetite nanoparticle surface like a thin passivate layer only was detectable using CV-CPEE, which is a very efficient, cheap, and powerful tool for surface characterization, and it is able to determine the passivate oxyhydroxide or oxide thin layer presence on the nanoparticle surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidation of ethanol (EtOH) at Pt(111) electrodes is dominated by the 4e path leading to acetic acid. The inclusion of surface defects such as those present on stepped surfaces leads to an increase of the reactivity towards the most desirable 12e path leading to CO2 as final product. This path is also favored when the methyl group is more oxidized, as in the case of ethylene glycol (EG) that spontaneously decomposes to CO on Pt(111) electrodes, thus showing a more effective breaking of the C-C bond. Some trends in reactivity can be envisaged when other derivative molecules are compared at well-ordered electrodes. This strategy was used in the past, but the improvement in the electrode pretreatment and the overall information available on the subject suggest that relevant information is still missing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the component E ┴ c of the pseudodielectric-function tensor <ε(E)> = <ε1(E)> + i< ε2(E)> of γ-phase single-crystal InSe, obtained from 1.5 to 9.2 eV by vacuum-ultraviolet spectroscopic ellipsometry with the sample at room temperature. Overlayer artifacts were reduced as far as possible by measuring fresh surfaces prepared by cleavage. Accurate critical-point energies of observed structures were obtained by a combined method of spectral analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We reported the first application of in situ shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) to an interfacial redox reaction under electrochemical conditions. We construct gap-mode sandwich structures composed of a thiol-terminated HS-6V6H viologen adlayer immobilized on a single crystal Au(111)-(1x1) electrode and covered by Au(60 nm)@SlO(2) core shell nanoparticles acting as plasmonic antennas. We observed high-quality, potential-dependent Raman spectra of the three viologen species V(2+),V(+center dot) and V(0) on a well-defined Au(111) substrate surface and could map their potential-dependent evolution. Comparison with experiments on powder samples revealed an enhancement factor of the nonresonant Raman modes of similar to 3 x 10(5), and up to 9 x 10(7) for the resonance modes. The study illustrates the unique capability of SHINERS and its potential in the entire field of electrochemical surface science to explore structures and reaction pathways on well-defined substrate surfaces, such as single crystals, for molecular, (electro-)- catalytic, bioelectrochemical systems up to fundamental double layer studies at electrified solid/liquid interfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En una planta de fusión, los materiales en contacto con el plasma así como los materiales de primera pared experimentan condiciones particularmente hostiles al estar expuestos a altos flujos de partículas, neutrones y grandes cargas térmicas. Como consecuencia de estas diferentes y complejas condiciones de trabajo, el estudio, desarrollo y diseño de estos materiales es uno de los más importantes retos que ha surgido en los últimos años para la comunidad científica en el campo de los materiales y la energía. Debido a su baja tasa de erosión, alta resistencia al sputtering, alta conductividad térmica, muy alto punto de fusión y baja retención de tritio, el tungsteno (wolframio) es un importante candidato como material de primera pared y como posible material estructural avanzado en fusión por confinamiento magnético e inercial. Sin embargo, el tiempo de vida del tungsteno viene controlado por diversos factores como son su respuesta termo-mecánica en la superficie, la posibilidad de fusión y el fallo por acumulación de helio. Es por ello que el tiempo de vida limitado por la respuesta mecánica del tungsteno (W), y en particular su fragilidad, sean dos importantes aspectos que tienes que ser investigados. El comportamiento plástico en materiales refractarios con estructura cristalina cúbica centrada en las caras (bcc) como el tungsteno está gobernado por las dislocaciones de tipo tornillo a escala atómica y por conjuntos e interacciones de dislocaciones a escalas más grandes. El modelado de este complejo comportamiento requiere la aplicación de métodos capaces de resolver de forma rigurosa cada una de las escalas. El trabajo que se presenta en esta tesis propone un modelado multiescala que es capaz de dar respuestas ingenieriles a las solicitudes técnicas del tungsteno, y que a su vez está apoyado por la rigurosa física subyacente a extensas simulaciones atomísticas. En primer lugar, las propiedades estáticas y dinámicas de las dislocaciones de tipo tornillo en cinco potenciales interatómicos de tungsteno son comparadas, determinando cuáles de ellos garantizan una mayor fidelidad física y eficiencia computacional. Las grandes tasas de deformación asociadas a las técnicas de dinámica molecular hacen que las funciones de movilidad de las dislocaciones obtenidas no puedan ser utilizadas en los siguientes pasos del modelado multiescala. En este trabajo, proponemos dos métodos alternativos para obtener las funciones de movilidad de las dislocaciones: un modelo Monte Cario cinético y expresiones analíticas. El conjunto de parámetros necesarios para formular el modelo de Monte Cario cinético y la ley de movilidad analítica son calculados atomísticamente. Estos parámetros incluyen, pero no se limitan a: la determinación de las entalpias y energías de formación de las parejas de escalones que forman las dislocaciones, la parametrización de los efectos de no Schmid característicos en materiales bcc,etc. Conociendo la ley de movilidad de las dislocaciones en función del esfuerzo aplicado y la temperatura, se introduce esta relación como ecuación de flujo dentro de un modelo de plasticidad cristalina. La predicción del modelo sobre la dependencia del límite de fluencia con la temperatura es validada experimentalmente con ensayos uniaxiales en tungsteno monocristalino. A continuación, se calcula el límite de fluencia al aplicar ensayos uniaxiales de tensión para un conjunto de orientaciones cristalográticas dentro del triángulo estándar variando la tasa de deformación y la temperatura de los ensayos. Finalmente, y con el objetivo de ser capaces de predecir una respuesta más dúctil del tungsteno para una variedad de estados de carga, se realizan ensayos biaxiales de tensión sobre algunas de las orientaciones cristalográficas ya estudiadas en función de la temperatura.-------------------------------------------------------------------------ABSTRACT ----------------------------------------------------------Tungsten and tungsten alloys are being considered as leading candidates for structural and functional materials in future fusion energy devices. The most attractive properties of tungsten for the design of magnetic and inertial fusion energy reactors are its high melting point, high thermal conductivity, low sputtering yield and low longterm disposal radioactive footprint. However, tungsten also presents a very low fracture toughness, mostly associated with inter-granular failure and bulk plasticity, that limits its applications. As a result of these various and complex conditions of work, the study, development and design of these materials is one of the most important challenges that have emerged in recent years to the scientific community in the field of materials for energy applications. The plastic behavior of body-centered cubic (bcc) refractory metals like tungsten is governed by the kink-pair mediated thermally activated motion of h¿ (\1 11)i screw dislocations on the atomistic scale and by ensembles and interactions of dislocations at larger scales. Modeling this complex behavior requires the application of methods capable of resolving rigorously each relevant scale. The work presented in this thesis proposes a multiscale model approach that gives engineering-level responses to the technical specifications required for the use of tungsten in fusion energy reactors, and it is also supported by the rigorous underlying physics of extensive atomistic simulations. First, the static and dynamic properties of screw dislocations in five interatomic potentials for tungsten are compared, determining which of these ensure greater physical fidelity and computational efficiency. The large strain rates associated with molecular dynamics techniques make the dislocation mobility functions obtained not suitable to be used in the next steps of the multiscale model. Therefore, it is necessary to employ mobility laws obtained from a different method. In this work, we suggest two alternative methods to get the dislocation mobility functions: a kinetic Monte Carlo model and analytical expressions. The set of parameters needed to formulate the kinetic Monte Carlo model and the analytical mobility law are calculated atomistically. These parameters include, but are not limited to: enthalpy and energy barriers of kink-pairs as a function of the stress, width of the kink-pairs, non-Schmid effects ( both twinning-antitwinning asymmetry and non-glide stresses), etc. The function relating dislocation velocity with applied stress and temperature is used as the main source of constitutive information into a dislocation-based crystal plasticity framework. We validate the dependence of the yield strength with the temperature predicted by the model against existing experimental data of tensile tests in singlecrystal tungsten, with excellent agreement between the simulations and the measured data. We then extend the model to a number of crystallographic orientations uniformly distributed in the standard triangle and study the effects of temperature and strain rate. Finally, we perform biaxial tensile tests and provide the yield surface as a function of the temperature for some of the crystallographic orientations explored in the uniaxial tensile tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical behavior of methanesulfonic acid on platinum single crystal electrode surfaces is investigated by cyclic voltammetry and infrared spectroscopy measurements. The results are compared with the voltammetric profiles of perchloric and trifluoromethanesulfonic acids. The differences are interpreted in terms of the effect of the anion on the structure of water. No adsorbed species are detected by infrared spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidation of ethanol (EtOH) at Pt(111) electrodes is dominated by the 4e path leading to acetic acid. The inclusion of surface defects such as those present on stepped surfaces leads to an increase of the reactivity towards the most desirable 12e path leading to CO2 as final product. This path is also favored when the methyl group is more oxidized, as in the case of ethylene glycol (EG) that spontaneously decomposes to CO on Pt(111) electrodes, thus showing a more effective breaking of the C-C bond. Some trends in reactivity can be envisaged when other derivative molecules are compared at well-ordered electrodes. This strategy was used in the past, but the improvement in the electrode pretreatment and the overall information available on the subject suggest that relevant information is still missing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genesis of a catalytically active model Pt/Al2O3/NiAl{110} oxidation catalyst is described. An ultrathin, crystalline γ-Al2O3 film was prepared via direct oxidation of a NiAl{110} single-crystal substrate. The room-temperature deposition of Pt clusters over the γ-Al2O3 film was characterised by LEED, AES and CO titration and follows a Stranski–Krastanov growth mode. Surface sulfation was attempted via SO2/O2 adsorption and thermal processing over bare and Pt promoted Al2O3/NiAl{110}. Platinum greatly enhances the saturation SOx coverage over that of bare alumina. Over clean Pt/γ-Al2O3 surfaces some adsorbed propene desorbs molecularly [similar]250 K while the remainder decomposes liberating hydrogen. Coadsorbed oxygen or sulfate promote propene combustion, with adsorbed sulfoxy species the most efficient oxidant. The chemistry of these alumina-supported Pt clusters shows a general evolution from small polycrystalline clusters to larger clusters with properties akin to low-index, Pt single-crystal surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new solid state organometallic route to embedded nanoparticle-containing inorganic materials is shown, through pyrolysis of metal-containing derivatives of cyclotriphosphazenes. Pyrolysis in air and at 800 °C of new molecular precursors gives individual single-crystal nanoparticles of SiP2O7, TiO2, P4O7, WP2O7 and SiO2, depending on the precursor used. High resolution transmission electron microscopy investigations reveal, in most cases, perfect single crystals of metal oxides and the first nanostructures of negative thermal expansion metal phosphates with diameters in the range 2–6 nm for all products. While all nanoparticles are new by this method, WP2O7 and SiP2O7 nanoparticles are reported for the first time. In situ recrystallization formation of nanocrystals of SiP2O7 was also observed due to electron beam induced reactions during measurements of the nanoparticulate pyrolytic products SiO2 and P4O7. The possible mechanism for the formation of the nanoparticles at much lower temperatures than their bulk counterparts in both cases is discussed. Degrees of stabilization from the formation of P4O7 affects the nanocrystalline products: nanoparticles are observed for WP2O7, with coalescing crystallization occurring for the amorphous host in which SiP2O7 crystals form as a solid within a solid. The approach allows the simple formation of multimetallic, monometallic, metal-oxide and metal phosphate nanocrystals embedded in an amorphous dielectric. The method and can be extended to nearly any metal capable of successful coordination as an organometallic to allow embedded nanoparticle layers and features to be deposited or written on surfaces for application as high mobility pyrophosphate lithium–ion cathode materials, catalysis and nanocrystal embedded dielectric layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solid-state pyrolysis of organometallic derivatives of a cyclotriphosphazene is demonstrated to be a new, simple and versatile solid-state templating method for obtaining single-crystal micro- and nanocrystals of transition and valve metal oxides. The technique, when applied to Mo-containing organometallics N3P3[OC6H4CH2CN·Mo(CO)5]6 and N3P3[OC6H4CH2CN·Mo(CO)4 py]6, results in stand-alone and surface-deposited lamellar MoO3 single crystals, as determined by electron and atomic force microscopies and X-ray diffraction. The size and morphology of the resulting crystals can be tuned by the composition of the precursor. X-ray photoelectron and infrared spectroscopies indicate that the deposition of highly lamellar MoO3 directly on an oxidized (400 nm SiO2) surface or (100) single-crystal silicon surfaces yields a layered uniphasic single-crystal film formed by cluster diffusion on the surface during pyrolysis of the metal-carbonyl derivatives. For MoO3 in its layered form, this provides a new route to an important intercalation material for high energy density battery materials.