910 resultados para linear quadratic Gaussian control
Resumo:
A method is proposed for determining the optimal placement and controller design for multiple distributed actuators to reduce the vibrations of flexible structures. In particular, application of piezoceramic patches to a horizontally-slewing single-link flexible manipulator modeled using the assumed modes method is investigated. The optimization method uses simulated annealing and allows placement of any number of distributed actuators of unequal length, although piezoceramics of fixed equal lengths are used in the example. It also designs an linear-quadratic-regulator controller as part of the optimization procedure. The measures of performance used in the investigation to determine optimality are the total mass of the system and the time integral of the absolute value of the hub and tip position error. This study also varies the relative weightings for each of these performance measures to observe the effects on the controller designs and piezoceramic patch positions in the optimized solutions.
Resumo:
This thesis is concerned with the inventory control of items that can be considered independent of one another. The decisions when to order and in what quantity, are the controllable or independent variables in cost expressions which are minimised. The four systems considered are referred to as (Q, R), (nQ,R,T), (M,T) and (M,R,T). Wiith ((Q,R) a fixed quantity Q is ordered each time the order cover (i.e. stock in hand plus on order ) equals or falls below R, the re-order level. With the other three systems reviews are made only at intervals of T. With (nQ,R,T) an order for nQ is placed if on review the inventory cover is less than or equal to R, where n, which is an integer, is chosen at the time so that the new order cover just exceeds R. In (M, T) each order increases the order cover to M. Fnally in (M, R, T) when on review, order cover does not exceed R, enough is ordered to increase it to M. The (Q, R) system is examined at several levels of complexity, so that the theoretical savings in inventory costs obtained with more exact models could be compared with the increases in computational costs. Since the exact model was preferable for the (Q,R) system only exact models were derived for theoretical systems for the other three. Several methods of optimization were tried, but most were found inappropriate for the exact models because of non-convergence. However one method did work for each of the exact models. Demand is considered continuous, and with one exception, the distribution assumed is the normal distribution truncated so that demand is never less than zero. Shortages are assumed to result in backorders, not lost sales. However, the shortage cost is a function of three items, one of which, the backorder cost, may be either a linear, quadratic or an exponential function of the length of time of a backorder, with or without period of grace. Lead times are assumed constant or gamma distributed. Lastly, the actual supply quantity is allowed to be distributed. All the sets of equations were programmed for a KDF 9 computer and the computed performances of the four inventory control procedures are compared under each assurnption.
Resumo:
Adaptive critic methods have common roots as generalizations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, nonlinear and nonstationary environments. In this study, a novel probabilistic dual heuristic programming (DHP) based adaptive critic controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) adaptive critic method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterized by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the critic network is then calculated and shown to be equal to the analytically derived correct value.
Resumo:
The idea of spacecraft formations, flying in tight configurations with maximum baselines of a few hundred meters in low-Earth orbits, has generated widespread interest over the last several years. Nevertheless, controlling the movement of spacecraft in formation poses difficulties, such as in-orbit high-computing demand and collision avoidance capabilities, which escalate as the number of units in the formation is increased and complicated nonlinear effects are imposed to the dynamics, together with uncertainty which may arise from the lack of knowledge of system parameters. These requirements have led to the need of reliable linear and nonlinear controllers in terms of relative and absolute dynamics. The objective of this thesis is, therefore, to introduce new control methods to allow spacecraft in formation, with circular/elliptical reference orbits, to efficiently execute safe autonomous manoeuvres. These controllers distinguish from the bulk of literature in that they merge guidance laws never applied before to spacecraft formation flying and collision avoidance capacities into a single control strategy. For this purpose, three control schemes are presented: linear optimal regulation, linear optimal estimation and adaptive nonlinear control. In general terms, the proposed control approaches command the dynamical performance of one or several followers with respect to a leader to asymptotically track a time-varying nominal trajectory (TVNT), while the threat of collision between the followers is reduced by repelling accelerations obtained from the collision avoidance scheme during the periods of closest proximity. Linear optimal regulation is achieved through a Riccati-based tracking controller. Within this control strategy, the controller provides guidance and tracking toward a desired TVNT, optimizing fuel consumption by Riccati procedure using a non-infinite cost function defined in terms of the desired TVNT, while repelling accelerations generated from the CAS will ensure evasive actions between the elements of the formation. The relative dynamics model, suitable for circular and eccentric low-Earth reference orbits, is based on the Tschauner and Hempel equations, and includes a control input and a nonlinear term corresponding to the CAS repelling accelerations. Linear optimal estimation is built on the forward-in-time separation principle. This controller encompasses two stages: regulation and estimation. The first stage requires the design of a full state feedback controller using the state vector reconstructed by means of the estimator. The second stage requires the design of an additional dynamical system, the estimator, to obtain the states which cannot be measured in order to approximately reconstruct the full state vector. Then, the separation principle states that an observer built for a known input can also be used to estimate the state of the system and to generate the control input. This allows the design of the observer and the feedback independently, by exploiting the advantages of linear quadratic regulator theory, in order to estimate the states of a dynamical system with model and sensor uncertainty. The relative dynamics is described with the linear system used in the previous controller, with a control input and nonlinearities entering via the repelling accelerations from the CAS during collision avoidance events. Moreover, sensor uncertainty is added to the control process by considering carrier-phase differential GPS (CDGPS) velocity measurement error. An adaptive control law capable of delivering superior closed-loop performance when compared to the certainty-equivalence (CE) adaptive controllers is finally presented. A novel noncertainty-equivalence controller based on the Immersion and Invariance paradigm for close-manoeuvring spacecraft formation flying in both circular and elliptical low-Earth reference orbits is introduced. The proposed control scheme achieves stabilization by immersing the plant dynamics into a target dynamical system (or manifold) that captures the desired dynamical behaviour. They key feature of this methodology is the addition of a new term to the classical certainty-equivalence control approach that, in conjunction with the parameter update law, is designed to achieve adaptive stabilization. This parameter has the ultimate task of shaping the manifold into which the adaptive system is immersed. The performance of the controller is proven stable via a Lyapunov-based analysis and Barbalat’s lemma. In order to evaluate the design of the controllers, test cases based on the physical and orbital features of the Prototype Research Instruments and Space Mission Technology Advancement (PRISMA) are implemented, extending the number of elements in the formation into scenarios with reconfigurations and on-orbit position switching in elliptical low-Earth reference orbits. An extensive analysis and comparison of the performance of the controllers in terms of total Δv and fuel consumption, with and without the effects of the CAS, is presented. These results show that the three proposed controllers allow the followers to asymptotically track the desired nominal trajectory and, additionally, those simulations including CAS show an effective decrease of collision risk during the performance of the manoeuvre.
Resumo:
In this paper we introduce the Reaction Wheel Pendulum, a novel mechanical system consisting of a physical pendulum with a rotating bob. This system has several attractive features both from a pedagogical standpoint and from a research standpoint. From a pedagogical standpoint, the dynamics are the simplest among the various pendulum experiments available so that the system can be introduced to students earlier in their education. At the same time, the system is nonlinear and underactuated so that it can be used as a benchmark experiment to study recent advanced methodologies in nonlinear control, such as feedback linearization, passivity methods, backstepping and hybrid control. In this paper we discuss two control approaches for the problems of swingup and balance, namely, feedback linearization and passivity based control. We first show that the system is locally feedback linearizable by a local diffeomorphism in state space and nonlinear feedback. We compare the feedback linearization control with a linear pole-placement control for the problem of balancing the pendulum about the inverted position. For the swingup problem we discuss an energy approach based on collocated partial feedback linearization, and passivity of the resulting zero dynamics. A hybrid/switching control strategy is used to switch between the swingup and the balance control. Experimental results are presented.
Resumo:
Various load compensation schemes proposed in literature assume that voltage source at point of common coupling (PCC) is stiff. In practice, however, the load is remote from a distribution substation and is supplied by a feeder. In the presence of feeder impedance, the PWM inverter switchings distort both the PCC voltage and the source currents. In this paper load compensation with such a non-stiff source is considered. A switching control of the voltage source inverter (VSI) based on state feedback is used for load compensation with non-stiff source. The design of the state feedback controller requires careful considerations in choosing a gain matrix and in the generation of reference quantities. These aspects are considered in this paper. Detailed simulation and experimental results are given to support the control design.
Resumo:
Traffic safety in rural highways can be considered as a constant source of concern in many countries. Nowadays, transportation professionals widely use Intelligent Transportation Systems (ITS) to address safety issues. However, compared to metropolitan applications, the rural highway (non-urban) ITS applications are still not well defined. This paper provides a comprehensive review on the existing ITS safety solutions for rural highways. This research is mainly focused on the infrastructure-based control and surveillance ITS technology, such as Crash Prevention and Safety, Road Weather Management and other applications, that is directly related to the reduction of frequency and severity of accidents. The main outcome of this research is the development of a ‘ITS control and surveillance device locating model’ to achieve the maximum safety benefit for rural highways. Using cost and benefits databases of ITS, an integer linear programming method is utilized as an optimization technique to choose the most suitable set of ITS devices. Finally, computational analysis is performed on an existing highway in Iran, to validate the effectiveness of the proposed locating model.
Resumo:
This paper considers an aircraft collision avoidance design problem that also incorporates design of the aircraft’s return-to-course flight. This control design problem is formulated as a non-linear optimal-stopping control problem; a formulation that does not require a prior knowledge of time taken to perform the avoidance and return-to-course manoeuvre. A dynamic programming solution to the avoidance and return-to-course problem is presented, before a Markov chain numerical approximation technique is described. Simulation results are presented that illustrate the proposed collision avoidance and return-to-course flight approach.
Resumo:
Automated crowd counting has become an active field of computer vision research in recent years. Existing approaches are scene-specific, as they are designed to operate in the single camera viewpoint that was used to train the system. Real world camera networks often span multiple viewpoints within a facility, including many regions of overlap. This paper proposes a novel scene invariant crowd counting algorithm that is designed to operate across multiple cameras. The approach uses camera calibration to normalise features between viewpoints and to compensate for regions of overlap. This compensation is performed by constructing an 'overlap map' which provides a measure of how much an object at one location is visible within other viewpoints. An investigation into the suitability of various feature types and regression models for scene invariant crowd counting is also conducted. The features investigated include object size, shape, edges and keypoints. The regression models evaluated include neural networks, K-nearest neighbours, linear and Gaussian process regresion. Our experiments demonstrate that accurate crowd counting was achieved across seven benchmark datasets, with optimal performance observed when all features were used and when Gaussian process regression was used. The combination of scene invariance and multi camera crowd counting is evaluated by training the system on footage obtained from the QUT camera network and testing it on three cameras from the PETS 2009 database. Highly accurate crowd counting was observed with a mean relative error of less than 10%. Our approach enables a pre-trained system to be deployed on a new environment without any additional training, bringing the field one step closer toward a 'plug and play' system.
Resumo:
In order to minimize the number of load shedding in a Microgrid during autonomous operation, islanded neighbour microgrids can be interconnected if they are on a self-healing network and an extra generation capacity is available in Distributed Energy Resources (DER) in one of the microgrids. In this way, the total load in the system of interconnected microgrids can be shared by all the DERs within these microgrids. However, for this purpose, carefully designed self-healing and supply restoration control algorithm, protection systems and communication infrastructure are required at the network and microgrid levels. In this chapter, first a hierarchical control structure is discussed for interconnecting the neighbour autonomous microgrids where the introduced primary control level is the main focus. Through the developed primary control level, it demonstrates how the parallel DERs in the system of multiple interconnected autonomous microgrids can properly share the load in the system. This controller is designed such that the converter-interfaced DERs operate in a voltage-controlled mode following a decentralized power sharing algorithm based on droop control. The switching in the converters is controlled using a linear quadratic regulator based state feedback which is more stable than conventional proportional integrator controllers and this prevents instability among parallel DERs when two microgrids are interconnected. The efficacy of the primary control level of DERs in the system of multiple interconnected autonomous microgrids is validated through simulations considering detailed dynamic models of DERs and converters.
Resumo:
This paper addresses the issue of output feedback model predictive control for linear systems with input constraints and stochastic disturbances. We show that the optimal policy uses the Kalman filter for state estimation, but the resultant state estimates are not utilized in a certainty equivalence control law
Resumo:
The recently developed single network adaptive critic (SNAC) design has been used in this study to design a power system stabiliser (PSS) for enhancing the small-signal stability of power systems over a wide range of operating conditions. PSS design is formulated as a discrete non-linear quadratic regulator problem. SNAC is then used to solve the resulting discrete-time optimal control problem. SNAC uses only a single critic neural network instead of the action-critic dual network architecture of typical adaptive critic designs. SNAC eliminates the iterative training loops between the action and critic networks and greatly simplifies the training procedure. The performance of the proposed PSS has been tested on a single machine infinite bus test system for various system and loading conditions. The proposed stabiliser, which is relatively easier to synthesise, consistently outperformed stabilisers based on conventional lead-lag and linear quadratic regulator designs.
Resumo:
Diabetes is a serious disease during which the body's production and use of insulin is impaired, causing glucose concentration level toincrease in the bloodstream. Regulating blood glucose levels as close to normal as possible, leads to a substantial decrease in long term complications of diabetes. In this paper, an intelligent neural network on-line optimal feedback treatment strategy based on nonlinear optimal control theory is presented for the disease using subcutaneous treatment strategy. A simple mathematical model of the nonlinear dynamics of glucose and insulin interaction in the blood system is considered based on the Bergman's minimal model. A glucose infusion term representing the effect of glucose intake resulting from a meal is introduced into the model equations. The efficiency of the proposed controllers is shown taking random parameters and random initial conditions in presence of physical disturbances like food intake. A comparison study with linear quadratic regulator theory brings Out the advantages of the nonlinear control synthesis approach. Simulation results show that unlike linear optimal control, the proposed on-line continuous infusion strategy never leads to severe hypoglycemia problems.