914 resultados para interstellar clouds


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interstellar gas abundances (Clayton et al., 1986) suggest that titanium may be bound up in dust and indeed, excess titanium in carbonaceous chondrites is attributed to mixing of interstellar and Solar System materials (Morton, 1974). Fine-grained chondritic interplanetary dust particles (lOPs) of cometary origin are relatively pristine early Solar System materials (Mackinnon and Rietmeijer, 1987; Rietmeijer, 1987) and show chemical and mineralogical signatures related to a pre-solar or nebular origin. For example, large OtH ratios suggest a presolar or interstellar dust component in some chondritic lOPs(Mackinnon and Rietmeijer, 1987). Ti/Si ratios (normalized to bulk CI) in lOPs and carbonaceous chondrite matrices exceed solar abundances but are similar to dust from comet Halley (Jessberger et al., 1987). The Ti-distribution in chondritic lOPs shows major, small-scale « 0.1 urn) variations (Flynn et al., 1978) consistent with heterogeneously distributed Ti-bearingphases. Analytical electron microscope (AEM) studies, in fact, have identified platey grains of Ti-metal, Ti407 and Ti s09 in two different lOPs (Mackinnon and Rietmeijer, 1987). The occurrence of Ti407 was related in situ low-temperature aqueous alteration and therefore implied the presence of BaTi03 (Rietmeijer and Mackinnon, 1984). Yet, the presence ofTis09 in an lOp which shows no evidence of aqueous alteration (Rietmeijer.and McKay, 1986) requires a different interpretation. The distribution of Ti-oxides in chondritic lOPs were investigated with ultra-microtomed thin sections of fluffy chondri tic lOP U2011*B (lSC allocation U2011C2) using a lEOL 2000FX AEM operating at an accelerating voltage of 200kV and with an attached Tracor Northern TN5500 energy dispersive spectrometer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Timely and comprehensive scene segmentation is often a critical step for many high level mobile robotic tasks. This paper examines a projected area based neighbourhood lookup approach with the motivation towards faster unsupervised segmentation of dense 3D point clouds. The proposed algorithm exploits the projection geometry of a depth camera to find nearest neighbours which is time independent of the input data size. Points near depth discontinuations are also detected to reinforce object boundaries in the clustering process. The search method presented is evaluated using both indoor and outdoor dense depth images and demonstrates significant improvements in speed and precision compared to the commonly used Fast library for approximate nearest neighbour (FLANN) [Muja and Lowe, 2009].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutral C3O has been prepared by collision induced neutralisation of the precursor radical anion formed by the reaction C-=C-CO-OEt --> C3O-. +EtO. . The similar neutralisaaion reionisation (-NR+) and charge reversal (CR) spectra of C3O-. indicate that the potential surfaces of C3O and C3O+. show favourable vertical Franck-Condon overlap, This suggests that the bond connectivities of anion, neutral and cation C3O are the same. Copyright (C) 1999 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computations at the RCCSD(T)/aug-cc-pVDZ//B3LYP/6-31G* level of theory indicate that neutral C6CO is a stable species. The ground state of this neutral is the singlet cumulene oxide :C=C=C=C=C=C=C=O. The adiabatic electron affinity and dipole moment of singlet C6CO are 2.47 eV and 4.13 D, respectively, at this level of theory. The anion (C6CO)(-.) should be a possible precursor to this neutral. It has been formed by an unequivocal synthesis in the ion source of a mass spectrometer by the S(N)2(Si) reaction between (CH3)(3)Si-C=C-C=C-C=C-CO-CMe3 and F- to form C-=C-C=C-C=C-CO-CMe3 which loses Me3C in the source to form C6CO-.. Charge stripping of this anion by vertical Franck-Condon oxidation forms C6CO, characterised by the neutralisation-reionisation spectrum (-NR+) of C6CO-., which is stable during the timeframe of this experiment (10(-6) s), Copyright (C) 2000 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutral C3O has been prepared by collision induced neutralisation of the precursor radical anion formed by the reaction C-=C-CO-OEt --> C3O-. +EtO. The similar neutralisaaion reionisation (-NR+) and charge reversal (CR) spectra of C3O-. indicate that the potential surfaces of C3O and C3O+. show favourable vertical Franck-Condon overlap, This suggests that the bond connectivities of anion, neutral and cation C3O are the same. Copyright (C) 1999 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both [C4CO]−· and [C2COC2]−· are formed in the ion source of a VG ZAB 2HF mass spectrometer by the respective processes HO− + Me3Si–CC–CC–CO–CMe3 → [C4CO]−· + Me3SiOH + Me3C·, and Me3Si–CC–CO–CC–SiMe3 + SF6 + e → [C2COC2]−· + 2Me3SiF + SF4. The second synthetic pathway involves a double desilylation reaction similar to that first reported by Squires. The two radical anion isomers produce different and characteristic charge reversal spectra upon collisional activation. In contrast, following collision induced charge stripping, both radical anions produce neutral C4CO as evidenced by the identical neutralisation reionisation (−NR+) spectra. The exclusive rearrangement of C213COC2 to C413CO indicates that 12C–O bond formation is not involved in the reaction. Ab initio calculations (at the RCCSD(T)/aug-cc-pVDZ//B3LYP/6-31G∗ level of theory) have been used to investigate the reaction coordinates on the potential surfaces for both singlet and triplet rearrangements of neutral C2COC2. Singlet C2COC2 is less stable than singlet C4CO by 78.8 kcal mol−1 and requires only 8.5 kcal mol−1 of additional energy to effect conversion to C4CO by a rearrangement sequence involving three C–C ring opening/cyclisation steps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent theoretical investigation by Terzieva & Herbst of linear carbon chains, C-n where n greater than or equal to 6, in the interstellar medium has shown that these species can undergo efficient radiative association to form the corresponding anions. An experimental study by Barckholtz, Snow & Bierbaum of these anions has demonstrated that they do not react efficiently with molecular hydrogen, leading to the possibility of detectable abundances of cumulene-type anions in dense interstellar and circumstellar environments. Here we present a series of electronic structure calculations which examine possible anionic candidates for detection in these media, namely the anion analogues of the previously identified interstellar cumulenes CnH and Cn-1CH2 and heterocumulenes CnO (where n = 2-10). The extraordinary electron affinities calculated for these molecules suggest that efficient radiative electron attachment could occur, and the large dipole moments of these simple (generally) linear molecules point to the possibility of detection by radio astronomy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reconstructing 3D motion data is highly under-constrained due to several common sources of data loss during measurement, such as projection, occlusion, or miscorrespondence. We present a statistical model of 3D motion data, based on the Kronecker structure of the spatiotemporal covariance of natural motion, as a prior on 3D motion. This prior is expressed as a matrix normal distribution, composed of separable and compact row and column covariances. We relate the marginals of the distribution to the shape, trajectory, and shape-trajectory models of prior art. When the marginal shape distribution is not available from training data, we show how placing a hierarchical prior over shapes results in a convex MAP solution in terms of the trace-norm. The matrix normal distribution, fit to a single sequence, outperforms state-of-the-art methods at reconstructing 3D motion data in the presence of significant data loss, while providing covariance estimates of the imputed points.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a physical mechanism to explain the origin of the intense burst of massive-star formation seen in colliding/merging, gas-rich, field spiral galaxies. We explicitly take account of the different parameters for the two main mass components, H-2 and H I, of the interstellar medium within a galaxy and follow their consequent different evolution during a collision between two galaxies. We also note that, in a typical spiral galaxy-like our galaxy, the Giant Molecular Clouds (GMCs) are in a near-virial equilibrium and form the current sites of massive-star formation, but have a low star formation rate. We show that this star formation rate is increased following a collision between galaxies. During a typical collision between two field spiral galaxies, the H I clouds from the two galaxies undergo collisions at a relative velocity of approximately 300 km s-1. However, the GMCs, with their smaller volume filling factor, do not collide. The collisions among the H I clouds from the two galaxies lead to the formation of a hot, ionized, high-pressure remnant gas. The over-pressure due to this hot gas causes a radiative shock compression of the outer layers of a preexisting GMC in the overlapping wedge region. This makes these layers gravitationally unstable, thus triggering a burst of massive-star formation in the initially barely stable GMCs.The resulting value of the typical IR luminosity from the young, massive stars from a pair of colliding galaxies is estimated to be approximately 2 x 10(11) L., in agreement with the observed values. In our model, the massive-star formation occurs in situ in the overlapping regions of a pair of colliding galaxies. We can thus explain the origin of enhanced star formation over an extended, central area approximately several kiloparsecs in size, as seen in typical colliding galaxies, and also the origin of starbursts in extranuclear regions of disk overlap as seen in Arp 299 (NGC 3690/IC 694) and in Arp 244 (NGC 4038/39). Whether the IR emission from the central region or that from the surrounding extranuclear galactic disk dominates depends on the geometry and the epoch of the collision and on the initial radial gas distribution in the two galaxies. In general, the central starburst would be stronger than that in the disks, due to the higher preexisting gas densities in the central region. The burst of star formation is expected to last over a galactic gas disk crossing time approximately 4 x 10(7) yr. We can also explain the simultaneous existence of nearly normal CO galaxy luminosities and shocked H-2 gas, as seen in colliding field galaxies.This is a minimal model, in that the only necessary condition for it to work is that there should be a sufficient overlap between the spatial gas distributions of the colliding galaxy pair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy input to giant molecular clouds is recalculated, using the proper linearized equations of motion, including the Coriolis force and allowing for changes in the guiding center. Perturbation theory yields a result in the limit of distant encounters and small initial epicyclic amplitudes. Direct integration of the motion equations allows the strong encounter regime to be studied. The present perturbation theory result differs by a factor of order unity from that of Jog and Ostriker (1988). The result of present numerical integrations for the 2D (planar) velocity dispersion is presented. The accretion rate for a molecular cloud in the Galactic disk is calculated.