962 resultados para game-centred approaches
Resumo:
An effective approach to research on farmers' behaviour is based on: i) an explicit and well-motivated behavioural theory; ii) an integrative approach; and iii) understanding feedback processes and dynamics. While current approaches may effectively tackle some of them, they often fail to combine them together. The paper presents the integrative agent-centred (IAC) framework, which aims at filling this gap. It functions in accordance with these three pillars and provides a conceptual structure to understand farmers' behaviour in agricultural systems. The IAC framework is agent-centred and supports the understanding of farmers' behavior consistently with the perspective of agricultural systems as complex social-ecological systems. It combines different behavioural drivers, bridges between micro and macro levels, and depicts a potentially varied model of human agency. The use of the framework in practice is illustrated through two studies on pesticide use among smallholders in Colombia. The examples show how the framework can be implemented to derive policy implications to foster a transition towards more sustainable agricultural practices. The paper finally suggests that the framework can support different research designs for the study of agents' behaviour in agricultural and social-ecological systems.
Resumo:
Item response theory (IRT) comprises a set of statistical models which are useful in many fields, especially when there is interest in studying latent variables. These latent variables are directly considered in the Item Response Models (IRM) and they are usually called latent traits. A usual assumption for parameter estimation of the IRM, considering one group of examinees, is to assume that the latent traits are random variables which follow a standard normal distribution. However, many works suggest that this assumption does not apply in many cases. Furthermore, when this assumption does not hold, the parameter estimates tend to be biased and misleading inference can be obtained. Therefore, it is important to model the distribution of the latent traits properly. In this paper we present an alternative latent traits modeling based on the so-called skew-normal distribution; see Genton (2004). We used the centred parameterization, which was proposed by Azzalini (1985). This approach ensures the model identifiability as pointed out by Azevedo et al. (2009b). Also, a Metropolis Hastings within Gibbs sampling (MHWGS) algorithm was built for parameter estimation by using an augmented data approach. A simulation study was performed in order to assess the parameter recovery in the proposed model and the estimation method, and the effect of the asymmetry level of the latent traits distribution on the parameter estimation. Also, a comparison of our approach with other estimation methods (which consider the assumption of symmetric normality for the latent traits distribution) was considered. The results indicated that our proposed algorithm recovers properly all parameters. Specifically, the greater the asymmetry level, the better the performance of our approach compared with other approaches, mainly in the presence of small sample sizes (number of examinees). Furthermore, we analyzed a real data set which presents indication of asymmetry concerning the latent traits distribution. The results obtained by using our approach confirmed the presence of strong negative asymmetry of the latent traits distribution. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Who was the cowboy in Washington? What is the land of sushi? Most people would have answers to these questions readily available,yet, modern search engines, arguably the epitome of technology in finding answers to most questions, are completely unable to do so. It seems that people capture few information items to rapidly converge to a seemingly 'obvious' solution. We will study approaches for this problem, with two additional hard demands that constrain the space of possible theories: the sought model must be both psychologically and neuroscienti cally plausible. Building on top of the mathematical model of memory called Sparse Distributed Memory, we will see how some well-known methods in cryptography can point toward a promising, comprehensive, solution that preserves four crucial properties of human psychology.
Resumo:
The main concern in Wireless Sensor Networks (WSN) algorithms and protocols are the energy consumption. Thus, the WSN lifetime is one of the most important metric used to measure the performance of the WSN approaches. Another important metric is the WSN spatial coverage, where the main goal is to obtain sensed data in a uniform way. This paper has proposed an approach called (m,k)-Gur Game that aims a trade-off between quality of service and the increasement of spatial coverage diversity. Simulation results have shown the effectiveness of this approach. © 2012 IEEE.
Resumo:
Patients with amnestic mild cognitive impairment are at high risk for developing Alzheimer's disease. Besides episodic memory dysfunction they show deficits in accessing contextual knowledge that further specifies a general spatial navigation task or an executive function (EF) virtual action planning. Virtual reality (VR) environments have already been successfully used in cognitive rehabilitation and show increased potential for use in neuropsychological evaluation allowing for greater ecological validity while being more engaging and user friendly. In our study we employed the in-house platform of virtual action planning museum (VAP-M) and a sample of 25 MCI and 25 controls, in order to investigate deficits in spatial navigation, prospective memory, and executive function. In addition, we used the morphology of late components in event-related potential (ERP) responses, as a marker for cognitive dysfunction. The related measurements were fed to a common classification scheme facilitating the direct comparison of both approaches. Our results indicate that both the VAP-M and ERP averages were able to differentiate between healthy elders and patients with amnestic mild cognitive impairment and agree with the findings of the virtual action planning supermarket (VAP-S). The sensitivity (specificity) was 100% (98%) for the VAP-M data and 87% (90%) for the ERP responses. Considering that ERPs have proven to advance the early detection and diagnosis of "presymptomatic AD," the suggested VAP-M platform appears as an appealing alternative.
Resumo:
Abstract This work is focused on the problem of performing multi‐robot patrolling for infrastructure security applications in order to protect a known environment at critical facilities. Thus, given a set of robots and a set of points of interest, the patrolling task consists of constantly visiting these points at irregular time intervals for security purposes. Current existing solutions for these types of applications are predictable and inflexible. Moreover, most of the previous centralized and deterministic solutions and only few efforts have been made to integrate dynamic methods. Therefore, the development of new dynamic and decentralized collaborative approaches in order to solve the aforementioned problem by implementing learning models from Game Theory. The model selected in this work that includes belief‐based and reinforcement models as special cases is called Experience‐Weighted Attraction. The problem has been defined using concepts of Graph Theory to represent the environment in order to work with such Game Theory techniques. Finally, the proposed methods have been evaluated experimentally by using a patrolling simulator. The results obtained have been compared with previous available
Resumo:
Background. Health care professionals, especially those working in primary health-care services, can play a key role in preventing and responding to intimate partner violence. However, there are huge variations in the way health care professionals and primary health care teams respond to intimate partner violence. In this study we tested a previously developed programme theory on 15 primary health care center teams located in four different Spanish regions: Murcia, C Valenciana, Castilla-León and Cantabria. The aim was to identify the key combinations of contextual factors and mechanisms that trigger a good primary health care center team response to intimate partner violence. Methods. A multiple case-study design was used. Qualitative and quantitative information was collected from each of the 15 centers (cases). In order to handle the large amount of information without losing familiarity with each case, qualitative comparative analysis was undertaken. Conditions (context and mechanisms) and outcomes, were identified and assessed for each of the 15 cases, and solution formulae were calculated using qualitative comparative analysis software. Results. The emerging programme theory highlighted the importance of the combination of each team’s self-efficacy, perceived preparation and women-centredness in generating a good team response to intimate partner violence. The use of the protocol and accumulated experience in primary health care were the most relevant contextual/intervention conditions to trigger a good response. However in order to achieve this, they must be combined with other conditions, such as an enabling team climate, having a champion social worker and having staff with training in intimate partner violence. Conclusions. Interventions to improve primary health care teams’ response to intimate partner violence should focus on strengthening team’s self-efficacy, perceived preparation and the implementation of a woman-centred approach. The use of the protocol combined with a large working experience in primary health care, and other factors such as training, a good team climate, and having a champion social worker on the team, also played a key role. Measures to sustain such interventions and promote these contextual factors should be encouraged.
Resumo:
Allowing plant pathology students to tackle fictitious or real crop problems during the course of their formal training not only teaches them the diagnostic process, but also provides for a better understanding of disease etiology. Such a problem-solving approach can also engage, motivate, and enthuse students about plant pathologgy in general. This paper presents examples of three problem-based approaches to diagnostic training utilizing freely available software. The first provides an adventure-game simulation where Students are asked to provide a diagnosis and recommendation after exploring a hypothetical scenario or case. Guidance is given oil how to create these scenarios. The second approach involves students creating their own scenarios. The third uses a diagnostic template combined with reporting software to both guide and capture students' results and reflections during a real diagnostic assignment.
Resumo:
Increased global uptake of entertainment gaming has the potential to lead to high expectations of engagement and interactivity from users of technology-enhanced learning environments. Blended approaches to implementing game-based learning as part of distance or technology-enhanced education have led to demonstrations of the benefits they might bring, allowing learners to interact with immersive technologies as part of a broader, structured learning experience. In this article, we explore how the integration of a serious game can be extended to a learning content management system (LCMS) to support a blended and holistic approach, described as an 'intuitive-guided' method. Through a case study within the EU-Funded Adaptive Learning via Intuitive/Interactive, Collaborative and Emotional Systems (ALICE) project, a technical integration of a gaming engine with a proprietary LCMS is demonstrated, building upon earlier work and demonstrating how this approach might be realized. In particular, how this method can support an intuitive-guided approach to learning is considered, whereby the learner is given the potential to explore a non-linear environment whilst scaffolding and blending provide guidance ensuring targeted learning objectives are met. Through an evaluation of the developed prototype with 32 students aged 14-16 across two Italian schools, a varied response from learners is observed, coupled with a positive reception from tutors. The study demonstrates that challenges remain in providing high-fidelity content in a classroom environment, particularly as an increasing gap in technology availability between leisure and school times emerges.
Resumo:
This paper presents the main achievements of the author’s PhD dissertation. The work is dedicated to mathematical and semi-empirical approaches applied to the case of Bulgarian wildland fires. After the introductory explanations, short information from every chapter is extracted to cover the main parts of the obtained results. The methods used are described in brief and main outcomes are listed. ACM Computing Classification System (1998): D.1.3, D.2.0, K.5.1.
Resumo:
Eschewing costly high-tech approaches, this paper looks at the experience of using low-tech approaches to game design assignments as problem based learning and assessment tool over a number of years in undergraduate teaching. General game design concepts are discussed, along with learning outcomes and assessment rubrics in line with Blooms Taxonomy based on evidence from students who had no prior experience of serious game play or design. Approaches to creating game design based assessments are offered.
Resumo:
Anxiety disorders are the most prevalent form of psychopathology among children and adolescents. Because demand for treatment far exceeds availability, there is a need for alternative approaches that are engaging, accessible, cost-effective, and incorporate practice to reach as many youth as possible. One novel approach is a video game intervention called MindLight that uses two evidence-based strategies to target childhood anxiety problems. Using neurofeedback mechanics to train players to: (1) attend to positive rather than threatening stimuli and (2) down-regulate arousal during stressful situations, MindLight teaches children how to practice overcoming anxious thoughts and arousal in a fun and engaging context. The present study examined the effectiveness of MindLight versus online cognitive-behavioural therapy (CBT) based psychoeducation sessions as a comparison in reducing anxiety in a sample of 144 anxious children, which was measured in three ways: (1) anxiety symptoms, (2) state anxiety in response to stress, and (3) psychophysiological arousal in response to stress. Children between the ages of 8.05–17.78 years (M=13.61, SD=1.79) were randomly assigned to play MindLight or complete psychoeducation for five hours over three weeks. State anxiety and psychophysiological arousal were assessed in response to two stress tasks before and after exposure to MindLight or psychoeducation. Anxiety symptoms were also measured via a questionnaire. Overall, participants showed significant reductions in anxiety symptoms and state anxiety in response to stress, but not psychophysiological arousal in response to stress. Moreover, the magnitude of reductions in anxiety did not differ between interventions but by age and sex. Specifically, older participants showed a greater decrease in severity of state anxiety in response to a social stressor than younger participants and girls showed a greater decrease in severity of state anxiety in response to a cognitive stressor than boys. The present study suggests that playing MindLight results in similar reductions in anxiety as one of the more common means of delivering CBT principles to youth.
Resumo:
Video games have become one of the largest entertainment industries, and their power to capture the attention of players worldwide soon prompted the idea of using games to improve education. However, these educational games, commonly referred to as serious games, face different challenges when brought into the classroom, ranging from pragmatic issues (e.g. a high development cost) to deeper educational issues, including a lack of understanding of how the students interact with the games and how the learning process actually occurs. This chapter explores the potential of data-driven approaches to improve the practical applicability of serious games. Existing work done by the entertainment and learning industries helps to build a conceptual model of the tasks required to analyze player interactions in serious games (gaming learning analytics or GLA). The chapter also describes the main ongoing initiatives to create reference GLA infrastructures and their connection to new emerging specifications from the educational technology field. Finally, it explores how this data-driven GLA will help in the development of a new generation of more effective educational games and new business models that will support their expansion. This results in additional ethical implications, which are discussed at the end of the chapter.
Resumo:
This paper aims to crystallize recent research performed at the University of Worcester to investigate the feasibility of using the commercial game engine ‘Unreal Tournament 2004’ (UT2004) to produce ‘Educational Immersive Environments’ (EIEs) suitable for education and training. Our research has been supported by the UK Higher Education Academy. We discuss both practical and theoretical aspects of EIEs. The practical aspects include the production of EIEs to support high school physics education, the education of architects, and the learning of literacy by primary school children. This research is based on the development of our novel instructional medium, ‘UnrealPowerPoint’. Our fundamental guiding principles are that, first, pedagogy must inform technology, and second, that both teachers and pupils should be empowered to produce educational materials. Our work is informed by current educational theories such as constructivism, experiential learning and socio-cultural approaches as well as elements of instructional design and game principles.
Resumo:
In a world where students are increasing digitally tethered to powerful, ‘always on’ mobile devices, new models of engagement and approaches to teaching and learning are required from educators. Serious Games (SG) have proved to have instructional potential but there is still a lack of methodologies and tools not only for their design but also to support game analysis and assessment. This paper explores the use of SG to increase student engagement and retention. The development phase of the Circuit Warz game is presented to demonstrate how electronic engineering education can be radically reimagined to create immersive, highly engaging learning experiences that are problem-centered and pedagogically sound. The Learning Mechanics–Game Mechanics (LM-GM) framework for SG game analysis is introduced and its practical use in an educational game design scenario is shown as a case study.