970 resultados para gallic acid propyl ester
Resumo:
The present work aimed the study of phenolic acids composition in apple pomace of Gala and Fuji cultivars. Phenolic acids were fractionated in phenolic acids, esterified and insoluble and analyzed by gas chromatography-mass spectrometry (GC-MS). Sixteen phenolic acids were identified in apple pomace samples. Total phenolic acids in apple pomace from Gala and Fuji cultivars were, in dry weight, 93.94 mg/g and 68.38 mg/g, respectively. Content of free phenolic acids in apple pomace from Gala cultivar was 29.11 mg/g and the following acids were identified: salicylic, protocatequinic, quinic, p-coumaric, gallic, propylgallate and synapic. Content of free phenolic acids in apple pomace from Fuji cultivar was 16.03 mg/g and the following acids were identified: salicylic, protocatequinic, gallic, ferulic and sinapic. Salicylic was the predominant free phenolic acids found in both cultivars, consisting of 91.67% and 63.57% of the free phenolic acids in Gala and Fuji cultivars, respectively. Chlorogenic acid (1.147 mg/g) was found only in apple pomace from Fuji cultivar. Content of esterified phenolic acids in apple pomace from Gala and Fuji cultivars were 53.75 mg/g and 48.29 mg/g, respectively. It was verified that the predominant esterified phenolic acid in pomace from apple Gala is derived from salicylic acid (52.76 mg/g). Acids derived from gallic acid (0.175 mg/g), propylgallate acid (0.198 mg/g), ferulic acid (0.159 mg/g) and sinapic acid (0.140 mg/g) were also found in Gala cultivar. Regarding to pomace from cultivar Fuji, the main esterified phenolic acid found is also derived from salicylic acid (47.42 mg/g) followed by gallic acid (0.270 mg/g), benzoic acid (0.194 mg/g) and sinapic acid (0.115 mg/g). Content of insoluble phenolic acids in apple pomace from Gala and Fugi cultivars were, in dry weight, 11.08 mg/g and 4.05 mg/g, respectively Insoluble phenolic acids derived from salicylic acid were found in higher concentrations in apple pomace from both cultivars.
Resumo:
The phenolic compounds content and antioxidant activity of pomace from the vinification of grape varieties widely produced in Brazil (Cabernet Sauvignon, Merlot, Bordeaux and Isabel) were investigated with a view to their exploitation as a potential source of natural antioxidants. Cabernet Sauvignon grape pomace was found to have the highest content of total phenolic compounds (74.75 mg gallic acid equivalent (GAE)/g), the highest antioxidant activity (determined using the 2,2`-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging methods; 485.42 and 505.52 mu Mol Trolox equivalent antioxidant capacity (TEAC)/g, respectively), and the highest reducing power (determined using the FRAP method; 249.46 mu Mol TEAC/g). The Bordeaux variety showed the highest oxidation inhibition power (41.13%), determined using the beta-carotene/linoleic acid method and the highest content of total anthocyanins (HPLC; 29.17 mg/g). Catechin was the most abundant non-anthocyanic compound identified in the grape pomace (150.16 mg/100 g) for all varieties. In this study, pomaces of the red wine vinification of Cabernet Sauvignon and Bordeaux varieties showed the highest potential as a source of antioxidant compounds and natural colourants, respectively. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Chemical investigation of the EtOAc fraction (EF) obtained from the ethanolic extract of Zanthoxylum naranjillo (Rutaceae) leaves (EE) by preparative HPLC resulted in the isolation of protocatechuic acid (1), gallic acid (2), p-hydroxybenzoic acid (3), and 5-O-caffeoylshikimic acid (4). This is the first time that the presence of compounds 1-4 in Z. naranjillo has been reported. Compounds 1-4, the EE, and EF were tested in vitro against Schistosoma mansoni adult worms. The results showed that the S. mansoni daily egg production decreased by 29.8%, 13.5% 28.4%, 17.7%, 16.3%, and 6.4%, respectively. Compounds 1 and 3 were also able to separate adult worm pairs into male and female. This activity may be correlated with the reduction in egg production, since 1 and 3 showed better inhibitory properties compared with 2 and 4.
Resumo:
Background/Aims. The transcription factor nuclear factor-kappa B (NF-kappa B) exerts a pivotal role in the pathogenesis of hepatic ischemia/reperfusion (I/R) injury. Caffeic acid phenyl ester (CAPE), a potent and specific NF-kappa B inhibitor, presents protective effects on I/R injury in some tissues. This study aimed to evaluate the effect of CAPE on hepatic I/R injury in rats. Materials and methods. Wistar rats were submitted to a sham operation, 60 min ischemia, or 60 min ischemia plus saline or CAPE treatment followed by 6 h reperfusion. Liver tissue injury was evaluated by alanine aminotransferase, aspartate aminotransferase, and tissue glutathione measurement, and histological damage score. Apoptotic hepatocytes were determined by the transferase-mediated dUTP-biotin nick-end labeling assay. Hepatic neutrophil accumulation was assessed by the naphthol method. Lipid peroxidation and NF-kappa B activation were evaluated by 4-hydroxynonenal and NF-kappa B p65 immunohistochemistry, respectively. Results. Animals submitted to ischemia showed a marked increase of alanine aminotransferase and aspartate aminotransferase after reperfusion, but with lower levels in CAPE group. Tissue glutathione content declined gradually during ischemia to reperfusion and was partially recovered with CAPE treatment. The histological damage score, apoptosis index, and neutrophil infiltration, as well as 4-hydroxynonenal and NF-kappa B p65 nuclear labeling, were higher in the liver of animals submitted to I/R compared to the ischemia group. However, the CAPE treatment significantly reduced all of these alterations. Conclusions. CAPE was able to protect the liver against normothermic I/R injury in rats. This effect may be associated with the inhibition of the NF-kappa B signaling pathway and decrease of the acute inflammatory response following I/R in the liver. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Background/Aims. Nuclear factor kappa B (NF kappa B) plays important role in the pathogenesis of skeletal muscle ischemia/reperfusion (I/R) injury. Caffeic acid phenyl ester (CAPE), a potent NF kappa B inhibitor, exhibits protective effects on I/R injury in some tissues. In this report, the effect of CAPE on skeletal muscle I/R injury in rats was studied. Methods. Wistar rats were submitted to sham operation, 120-min hindlimb ischemia, or 120-min hindlimb ischemia plus saline or CAPE treatment followed by 4-h reperfusion. Gastrocnemius muscle injury was evaluated by serum aminotransferase levels, muscle edema, tissue glutathione and malondialdehyde measurement, and scoring of histological damage. Apoptotic nuclei were determined by a terminal uridine deoxynucleotidyl transferase dUTP nick end labeling assay. Muscle neutrophil and mast cell accumulation were also assessed. Lipoperoxidation products and NF kappa B were evaluated by 4-hydroxynonenal and NF kappa B p65 immunohistochemistry, respectively. Results. Animals submitted to ischemia showed a marked increase in aminotransferases after reperfusion, but with lower levels in the CAPE group. Tissue glutathione levels declined gradually during ischemia to reperfusion, and were partially recovered with CAPE treatment. The histological damage score, muscle edema percentage, tissue malondialdehyde content, apoptosis index, and neutrophil and mast cell infiltration, as well as 4-hydroxynonenal and NF kappa B p65 labeling, were higher in animals submitted to I/R compared with the ischemia group. However, the CAPE treatment significantly reduced all of these alterations. Conclusions. CAPE was able to protect skeletal muscle against I/R, injury in rats. This effect may be associated with the inhibition of the NF kappa B signaling pathway and decrease of the tissue inflammatory response following skeletal muscle I/R. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
BACKGROUND: Characterisation of the essential oils from O. glandulosum collected in three locations of Tunisia, chemical composition and the evaluation of their antioxidant activities were carried out. RESULTS: The essential oils from Origanum vulgare L. subsp. glandulosum (Desf.) letswaart collected from three localities of north Tunisia - Krib, Bargou and Nefza - were obtained in yields of 2.5, 3.0 and 4.6% (v/w), respectively. The essential oils were analysed by GC and GC/MS and assayed for their total phenolics content, by the Folin-Ciocalteu method, and antioxidant effectiveness, using the 2,2-diphenyl-1-picrylhydrazil (DPPH) radical scavenging assay. The main components of these essential oils, from Nefza, Bargou and Krib, were p-cymene (36%, 40% and 46%), thymol (32%, 39% and 18%), gamma-terpinene (24%, 12% and 16%) and carvacrol (2%, 2% and 15%), respectively). The ability to scavenge the DPPH radicals, expressed by IC50, ranged from 59 to 80 mg L-1. The total phenolic content, expressed in gallic acid equivalent (GAE) g kg(-1) dry weight, varied from 9.37 to 17.70 g kg(-1) dw. CONCLUSIONS: A correlation was identified between the total phenolic content of the essential oils and DPPH radical scavenger capacity. The occurrence of a p-cymene chemotype of O. glandulosum in the northern region of Tunisia is demonstrated.
Resumo:
Mestrado em Engenharia Química
Resumo:
In this paper, it was evaluated the total antioxidant capacity (TAC) of beverages using an electrochemical biosensor. The biosensor consisted on the purine base (guanine or adenine) electro-immobilization on a glassy carbon electrode surface (GCE). Purine base damage was induced by the hydroxyl radical generated by Fenton-type reaction. Five antioxidants were applied to counteract the deleterious effects of the hydroxyl radical. The antioxidants used were ascorbic acid, gallic acid, caffeic acid, coumaric acid and resveratrol. These antioxidants have the ability to scavenger the hydroxyl radical and protect the guanine and adenine immobilized on the GCE surface. The interaction carried out between the purinebase immobilized and the free radical in the absence and presence of antioxidants was evaluated by means of changes in the guanine and adenine anodic peak obtained by square wave voltammetry (SWV). The results demonstrated that the purine-biosensors are suitable for rapid assessment of TAC in beverages.
Resumo:
A peroxidação lipídica, além de causar sérios danos no corpo humano, é a principal causa da deterioração dos alimentos afectando a sua cor, aroma e valor nutricional, o que conduz a uma diminuição do seu ciclo de vida. O fenómeno de oxidação pode ser retardado com recurso a antioxidantes, de origem natural ou sintética, que inibam a formação de espécies reactivas, ou que reajam com estas, formando posteriormente radicais com menor grau de reactividade. Nesta dissertação procedeu-se à síntese e elucidação estrutural de novos antioxidantes, derivados dos ácidos 3,4-diidroxibenzóico (PCA) e 3,4-diidroxifenilacético (DOPAC), e à avaliação da sua actividade anti-radicalar e antioxidante. Os novos antioxidantes sintetizados foram caracterizados usando RMN de 1H e de 13C, FTIR e EM-IE. A avaliação da actividade antioxidante foi realizada com base no método do radical 2,2- difenil-1-picrilhidrazilo (DPPH·) e por técnicas electroquímicas (voltametria de impulso diferencial e voltametria cíclica). Os resultados obtidos permitiram concluir que a eficácia anti-radicalar (AE) é determinada por aspectos da estrutura molecular dos compostos, nomeadamente pela presença de grupos hidroxilo no anel aromático e também de grupos extensores relativamente à posição do grupo carboxílico. Os resultados permitiram verificar que o DOPAC apresenta a mais elevada eficiência anti-radicalar dos compostos em estudo, incluindo o trolox e o ácido gálhico (compostos de referência). Com base nos resultados obtidos concluiu-se que, um menor potencial de oxidação conduz a uma melhor actividade anti-radicalar dos compostos. De facto, verificou-se para o PCA e respectivos ésteres o maior potencial de oxidação e também a menor eficiência anti-radicalar. Em contrapartida, os antioxidantes com maior eficiência anti-radicalar, DOPAC, trolox e ácido gálhico, apresentaram menor potencial de oxidação.
Resumo:
A new flow-injection analytical procedure is proposed for the determination of the total amount of polyphenols in wines; the method is based on the formation of a colored complex between 4-aminoantipyrine and phenols, in the presence of an oxidizing reagent. The oxidizing agents hexacyanoferrate(III), peroxodisulfate, and tetroxoiodate(VII) were tested. Batch trials were first performed to select appropriate oxidizing agents, pH, and concentration ratios of reagents, on the basis of their effect on the stability of the colored complex. Conditions selected as a result of these trials were implemented in a flow-injection analytical system in which the influence of injection volume, flow rate, and reaction- coil length, was evaluated. Under the optimum conditions the total amount of polyphenols, expressed as gallic acid, could be determined within a concentration range of 36 to 544 mg L–1, and with a sensitivity of 344 L mol–1 cm–1 and an RSD <1.1%. The reproducibility of analytical readings was indicative of standard deviations <2%. Interference from sugars, tartaric acid, ascorbic acid, methanol, ammonium sulfate, and potassium chloride was negligible. The proposed system was applied to the determination of total polyphenols in red wines, and enabled analysis of approximately 55 samples h–1. Results were usually precise and accurate; the RSD was <3.9% and relative errors, by the Folin–Ciocalteu method, <5.1%.
Resumo:
In this paper, a biosensor based on a glassy carbon electrode (GCE) was used for the evaluation of the total antioxidant capacity (TAC) of flavours and flavoured waters. This biosensor was constructed by immobilising purine bases, guanine and adenine, on a GCE. Square wave voltammetry (SWV) was selected for the development of this methodology. Damage caused by the reactive oxygen species (ROS), superoxide radical (O2·−), generated by the xanthine/xanthine oxidase (XOD) system on the DNA-biosensor was evaluated. DNA-biosensor encountered with oxidative lesion when it was in contact with the O2·−. There was less oxidative damage when reactive antioxidants were added. The antioxidants used in this work were ascorbic acid, gallic acid, caffeic acid, coumaric acid and resveratrol. These antioxidants are capable of scavenging the superoxide radical and therefore protect the purine bases immobilized on the GCE surface. The results demonstrated that the DNA-based biosensor is suitable for the rapid assess of TAC in beverages.
Resumo:
The antioxidant profiles of 39 water samples (29 flavored waters based on 10 natural waters) and 6 flavors used in their formulation (furnished by producers) were determined. Total phenol and flavonoid contents, reducing power, and DPPH radical scavenging activity were the optical techniques implemented and included in the referred profile. Flavor extracts were analyzed by HS-SPME/GC-MS to obtain the qualitative and quantitative profiles of the volatile fraction of essential oils. Results pointed out a higher reducing power (0.14 11.8 mg of gallic acid/L) and radical scavenging activity (0.29 211.5 mg Trolox/L) of flavored waters compared with the corresponding natural ones, an interesting fact concerning human health. Bioactive compounds, such as polyphenols, were present in all samples (0.5 359 mg of gallic acid/L), whereas flavonoids were not present either in flavored waters or in flavors. The major components of flavor extracts were monoterpenes, such as citral, R-limonene, carveol, and R-terpineol.
Resumo:
In this study, a method for the electrochemical quantification of the total antioxidant capacity (TAC) in beverages was developed. The method is based on the oxidative damage to the purine bases, adenine or guanine, that are immobilized on a glassy carbon electrode (GCE) surface. The oxidative lesions on the DNA bases were promoted by the sulfate radical generated by the persulfate/iron(II) system. The presence of antioxidants on the reactive system promoted the protection of the DNA bases immobilized on the GCE by scavenging the sulfate radical. Square-wave voltammetry (SWV) was the electrochemical technique used to perform this study. The efficiencies of five antioxidants (ascorbic acid, gallic acid, caffeic acid, coumaric acid and resveratrol) in scavenging the sulfate radical and, therefore, their ability to protect the purine bases immobilized on the GCE were investigated. These results demonstrated that the purine-based biosensor is suitable for the rapid assessment of the TAC in flavors and flavored water.
Resumo:
The purpose of the present work is to determine the antioxidant capacity (AC) of 27 commercial beers. The AC indicates the degree of protection of a certain organism against oxidative damage provoked by reactive oxygen and nitrogen species. Assays were carried out by the following methods: (i) total radical trapping antioxidant parameter (TRAP); (ii) trolox equivalent antioxidant capacity (TEAC); (iii) trolox equivalent antioxidant capacity (DPPH); (iv) ferric-ion reducing antioxidant parameter (FRAP); (v) cupric reducing antioxidant capacity (CUPRAC); (vi) oxygen radical absorbance capacity (ORAC). Ascorbic acid (AA), gallic acid (GA) and trolox (TR) were used as standards. All beers showed antioxidant power, but a wide range of ACs was observed. The effect of several factors upon these differences was studied. Statistical differences were found between ACs of beers of different colours. ORAC method provided always higher experimental ACs, of significant statistical differences to other assays.
Resumo:
Phenolic acids are ubiquitous antioxidants accounting for approximately one third of the phenolic compounds in our diet. Their importance was supported by epidemiological studies that suggest an inverse relationship between dietary intake of phenolic antioxidants and the occurrence of diseases, such as cancer and neurodegenerative disorders. However, until now, most of natural antioxidants have limited therapeutic success a fact that could be related with their limited distribution throughout the body and with the inherent difficulties to attain the target sites. The development of phenolic antioxidants based on a hybrid concept and structurally based on natural hydroxybenzoic (gallic acid) and hydroxycinnamic (caffeic acid) scaffolds seems to be a suitable solution to surpass the mentioned drawbacks. Galloylecinnamic hybrids were synthesized and their antioxidant activity as well as partition coefficients and redox potentials evaluated. The structureepropertyeactivity relationship (SPAR) study revealed the existence of a correlation between the redox potentials and antioxidant activity. The galloylecinnamic acid hybrid stands out as the best antioxidant supplementing the effect of a blend of gallic acid plus caffeic acid endorsing the hypothesis that the whole is greater than the sum of the parts. In addition, some hybrid compounds possess an appropriate lipophilicity allowing their application as chain-breaking antioxidant in biomembranes or other type of lipidic systems. Their predicted ADME properties are also in accordance with the general requirements for drug-like compounds. Accordingly, these phenolic hybrids can be seen as potential antioxidants for tackling the oxidative status linked to the neurodegenerative, inflammatory or cancer processes.