546 resultados para fulfillment


Relevância:

10.00% 10.00%

Publicador:

Resumo:

悬崖代表着一个残遗的、较少受到干扰的古生境,悬崖也是生物多样性的避难所。这个特殊生境中分布种类丰富的稀有植物和特有植物,而这些稀有和特有植物又往往以悬崖为唯一的生境,在长期的演化历史进程中形成彼此相互适应的关系。这种分布在特殊生境中的稀有植物为保护研究提出了新的研究方向和问题。本文以蔷薇科的中国特有植物太行花(Taihangia rupestris Yü et Li)为对象,对这个仅分布在有限的地理范围内悬崖上的稀有物种进行了保护生物学的研究。 利用RAPD分子标记技术对太行花8个居群的遗传多样性和遗传结构进行了检测分析。结果表明太行花居群内维持着较高的遗传多样性水平,未显示遭受过严重遗传瓶颈的迹象。同时,居群间遗传分化显著,与居群间的地理距离相关,聚类分析得到的树系图与太行花种下两个变种(太行花原变种Taihangia rupestris var. rupestris和缘毛太行花Taihangia rupestris var. ciliate Yü et Li)的划分相符。 通过栽培实验,研究了太行花对光照和养分的反应,从生态学角度检测植物对环境因子变化的适应能力。结果表明光照处理显著影响太行花的气体交换参数,且显示出随季节不同而变化的趋势。在8月第一次测量时,光合速率随着光照水平的增加而增加;而在9月底第二次测量时,高光下植株的光合速率反低于中光条件下的植株。光合光反应曲线表明太行花对不同光照水平(高光、中光和低光)均显示出一定的光合适应性。 光照对太行花的生长反应、形态、解剖等指标均具有显著的作用。在收获时,高光下植物形成小而厚的叶片,更快的叶片形成速率足以弥补单叶面积上光合速率的下降,使植株维持最大的总生物量。中光条件下的植株具有更长的叶柄,更大的叶面积,大而薄的叶片,和更大的叶面积比,被认为是对较弱光照环境适应的表现。而光照对叶片的气孔指标(气孔密度、气孔指数和大小)没有作用,养分施加对太行花的影响也甚微。总体来说,太行花显示出对光照变化的生理适应性和形态可塑性,光照和养分这两个环境条件均非影响太行花局限分布的关键因素。 同时,我们采用扫描电镜手段跟踪观察了太行花的花的早期发育过程。太行花早期发育过程中苞片内残留的退化花痕迹表明,太行花的顶生单花其实是有限聚伞花序中其它花芽败育的结果,显示出从花序向单花演化的趋势。同时,雌蕊的发育在早期是正常的,未显示出退化痕迹。 根据以上结果表明,局限分布在特殊生境上的太行花并未显示出生理适应幅度的狭窄性和遗传多样性水平的降低,因此,太行花在长期的进化过程中形成了对特殊生境——悬崖的适应性,遗传衰退和缺乏适应性不是稀有植物太行花局限分布的原因。在对太行花的保护中应进一步加强对其生境的保护,并在进行迁地保护和回归引种时应兼顾不同变种和地理分布的居群,以实现对其遗传完整性的有效保护。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文基于华南、华北地区二叠纪—三叠纪陆生植物大化石和孢粉的数据库, 对中国二叠纪—三叠纪陆生植物的多样性变化进行了统计分析研究,并重点探讨了在二叠纪—三叠纪界线(Permian-Triassic Boundary,PTB )陆生植物是否与同期的海洋动物一样发生了同步的集群灭绝事件。 统计分析表明,华南、华北陆生植物大化石的分异度穿过PTB 均显示了较长时续(约37.8Ma)的下降和残存阶段,而孢粉化石在早三叠世的分异度则是上升的。总体上,陆生植物分异度穿过PTB 的变化较同期的海洋动物平稳缓慢。华南地区陆生植物大化石在晚二叠世末长兴期(Changhsingian)虽然伴随着最高的属灭绝率85.94% 和最低的属新生率28.12%,发生了最大的灭绝事件,但在晚二叠世早期和早三叠世的属的灭绝率也较高,分别为61.02% 和66.67% 。种的灭绝率在晚二叠世早期从早二叠世晚期的39%大幅度上升到80.36%,晚二叠世晚期达峰值97%,早三叠世稍降为93%,显然高于其它时段灭绝率范围(30—70%)。种和属的灭绝率呈现了同样的高峰阶段,从晚二叠世早期至早三叠世,时续为20.8 百万年(Ma)。基于更替率分析,华南地区陆生植物的高更替率事件分别发生在早二叠世晚期(93.75%)、早三叠世(90.92%)和晚三叠世(91.38%),但陆生植物在穿越早二叠世晚期—晚三叠世的整个过程中,更替率波动不大、比较平稳。华北地区陆生植物大化石穿越PTB 的灭绝率比华南地区低,属级高灭绝率事件集中在晚二叠世早期(67.31%)和晚二叠世晚期(63.89%), 时续为14.8Ma,种级高灭绝率事件与华南地区类似,集中在晚二叠世早期(85.67%)、晚二叠世晚期(90.86%)和早三叠世(80.28% )三个阶段,时续为20.8Ma 。显而易见,这比同期海洋动物集群灭绝的时续(3—11Ma )要长。 本文基于这些分析结果,仔细考虑了集群灭绝的4 个特点(即量值、广度、幅度和时续),认为华南、华北陆生植物在PTB 并未发生集群灭绝事件,而是发生了演化替代,即陆生植物穿过PTB 经历了大的植物群重组和新种的演化。总体上,中国二叠纪—三叠纪陆生植物中选择性灭绝非常明显,古生代占优势的种子蕨、真蕨类、木本石松类和楔叶类逐渐被早中生代比较进化的裸子植物和真蕨类植物所替代,陆生植物穿过PTB 显示了危机(灭绝)—残存—复苏—辐射的宏演化式样。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

锡林郭勒草原是欧亚大陆草原区亚洲东部草原亚区保存比较完整的原生草原部分。区内生态环境类型独特,具有草原生物群落的基本特征,并能全面反映内蒙古高原典型草原生态系统的结构和生态过程。本区拥有目前我国最大的草原与草甸生态系统类型的自然保护区,在草原生物多样性的保护方面占有重要的位置和明显的国际影响。目前,草地退化导致的区域生态问题越来越突出,评价我国草地资源生态服务功能的经济价值,对于制定合理的区域生态保护和经济开发决策、保护和恢复草地生态系统具有重要意义。 针对锡林郭勒草原生态系统服务价值的评估,根据不同的退化强度对锡林郭勒草原植被类型进行定量模拟将其分为正常草地和退化草地,根据退化等级标准划分,将其分为严重退化、中度退化和轻度退化,以锡林郭勒草原有机物生产为基础,分别采用市场价值法、替代市场法和假想市场法等,估算其主要服务功能的经济价值。 本研究选取草地生态系统服务功能价值的功能指标包括食物和原材料生产、旅游和娱乐、有机物质生产、气体调节价值、水土保持、涵养水源价值、以及生物控制及其生物多样性等8类功能进行了评价,基于服务功能机制对其价值量评价方法进行了探索.并在此基础上对其生态经济价值进行了评价,得出锡林郭勒草地生态系统8类服务功能的年生态经济价值分别为元,3.4×108元、6.7×108元、15.8×108元、122.24×108元、3.9×108元107.64×108元、16×108元、36.01×108元,8类功能的总价值为311.69×108。 研究结果表明,草地生态系统除为社会提供直接产品价值外.还具有巨大的间接使用价值,而且这种价值对人类的贡献与提供产品本身同样重要。在各种服务功能中,水土保持价值最为重要;因此,加强草原生态系统环境建设对于维持区域生态安全具有重要意义。今后草地生态系统服务功能及其价值评价工作应注重加强草地生态系统服务功能机制研究。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using next-generation sequencing technology alone, we have successfully generated and assembled a draft sequence of the giant panda genome. The assembled contigs (2.25 gigabases (Gb)) cover approximately 94% of the whole genome, and the remaining gaps (0.05 Gb) seem to contain carnivore-specific repeats and tandem repeats. Comparisons with the dog and human showed that the panda genome has a lower divergence rate. The assessment of panda genes potentially underlying some of its unique traits indicated that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition. We also identified more than 2.7 million heterozygous single nucleotide polymorphisms in the diploid genome. Our data and analyses provide a foundation for promoting mammalian genetic research, and demonstrate the feasibility for using next-generation sequencing technologies for accurate, cost-effective and rapid de novo assembly of large eukaryotic genomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electronic band structures and optical gains of InAs1-xNx/GaAs pyramid quantum dots (QDs) are calculated using the ten-band k . p model and the valence force field method. The optical gains are calculated using the zero-dimensional optical gain formula with taking into consideration of both homogeneous and inhomogeneous broadenings due to the size fluctuation of quantum dots which follows a normal distribution. With the variation of QD sizes and nitrogen composition, it can be shown that the nitrogen composition and the strains can significantly affect the energy levels especially the conduction band which has repulsion interaction with nitrogen resonant state due to the band anticrossing interaction. It facilitates to achieve emission of longer wavelength (1.33 or 1.55 mu m) lasers for optical fiber communication system. For QD with higher nitrogen composition, it has longer emission wavelength and less detrimental effect of higher excited state transition, but nitrogen composition can affect the maximum gain depending on the factors of transition matrix element and the Fermi-Dirac distributions for electrons in the conduction bands and holes in the valence bands respectively. For larger QD, its maximum optical gain is greater at lower carrier density, but it is slowly surpassed by smaller QD as carrier concentration increases. Larger QD can reach its saturation gain faster, but this saturation gain is smaller than that of smaller QD. So the trade-off between longer wavelength, maximum optical, saturation gain, and differential gain must be considered to select the appropriate QD size according to the specific application requirement. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3143025]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tunneling magnetoresistance (TMR) in Ga(0.9)2Mn(0.08)As/Al-O/Co40Fe40B20 trilayer hybrid structure as a function of temperature from 10 to 50 K with magnetic field vertical bar H vertical bar <= 2000 Oe has been studied. TMR ratio of 1.6% at low fields at 10 K was achieved with the applied current of 1 mu A. The behavior of junction resistance was well explained by the tunneling resistance across the barrier. Strong bias dependences of magnetoresistance and junction resistance were presented. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3068418]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-assembled quantum dots and wires were obtained in the InxGa1-xAs/GaAs and InAs/In0.52Al0.48As/InP systems, respectively, using molecular beam epitaxy (MBE). Uniformity in the distribution, density, and spatial ordering of the nanostructures can be controlled to some extent by adjusting and optimizing the MBE growth parameters. In addition, some interesting observation on the InAs wire alignment on InP(001) is discussed. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

生物质燃料乙醇是一种高度清洁的交通液体燃料,是减少温室气体排放,缓解大气污染的最佳技术选择。以非粮原料生产燃料乙醇可以在进行能源生产的同时保证粮食安全,有利于产业的可持续发展。在众多的非粮原料中,甘薯是我国开发潜力最大的生物质能源作物之一。我国占世界甘薯种植总面积和产量的90%。同时,甘薯的单位面积燃料乙醇产量远大于玉米和小麦。其成本是目前酒精中最低廉的,因此利用甘薯生产乙醇是发展生物质燃料乙醇的首要选择。目前采用薯类全原料主要采用分批发酵生产乙醇,其技术水平低,发酵强度低,一般在0.7-2.5g/(L•h),乙醇浓度低,甘薯发酵乙醇为6-8%(v/v),能耗高,环境负荷大,污染严重。针对上述问题,本文从菌株选育、原料预处理、中试放大、残糖成分分析等方面进行研究。 为了研究乙醇发酵生产规模扩大过程中,大型发酵罐底部高压条件下,CO2对酵母乙醇发酵的影响,我们通过CO2 加压的方法进行模拟试验,研究结果表明,发酵时间随压强的升高而逐渐延长,高压CO2 对乙醇发酵效率影响不大,在0.3 MPa 以下时,发酵效率均可达到90%以上。高压CO2 对发酵的抑制作用是高压和CO2 这两个因素联合作用的结果。高压CO2 条件下,酵母胞外酶和胞内重要酶类的酶活均表现出特征性。0.2 MPa 下,酶活性的变化趋势和0.1 MPa 条件下的较为一致。而0.3 MPa 下的酶活变化趋势与0.4 MPa 下的酶活更为接近。通过全基因表达分析发现在CO2 压力为0.3 MPa 下,乙醇发酵途径中多个基因表达量下调,同时海藻糖合成酶和热激蛋白基因表达量上调。 筛选耐高温的乙醇酵母菌株能够解决糖化温度和发酵温度不协调的矛盾,实现真正意义上的边糖化边发酵。高温发酵还能够降低发酵时的冷却成本,实现乙醇的周年生产。本研究筛选出一株高温发酵菌株Y-H1,进而我们对该菌株的胞外酶和胞内乙醇代谢重要酶类的酶活性进行了分析。结果表明Y-H1 能够在40 ℃条件下正常进行乙醇发酵,发酵33h,最终乙醇浓度达到10.7%(w/w),发酵效率达到90%以上。同时发酵液最终pH 在3.5 左右,显示菌株具有一定的耐酸性能力。同时观察到40 ℃下,菌株的胞外酶和胞内乙醇代谢重要酶类的酶活性发生了变化,乙醇发酵途径中关键酶基因表达下调,而海藻糖合成酶与热激蛋白基因表达量上调,这些结果为进一步研究酵母菌耐热调控机理提供了依据。 糖蜜是一种大规模工业生产乙醇的理想原料,本研究利用选育高浓度乙醇发酵菌株结合配套的发酵稳定剂,研究了糖蜜高浓度乙醇发酵情况。结果表明采用冷酸沉淀预处理糖蜜溶液,采用分批补料的发酵方式,乙醇浓度最高达到了10.26% (w/w),发酵时间为42 h。同时观察到在糖蜜发酵中,乙醛含量与乙醇浓度存在一定的相关性。 快速乙醇发酵对于缩短乙醇生产周期、降低乙醇生产成本、减少原料腐烂损失具有重要意义。本研究诱变和筛选得到了一株快速乙醇发酵菌株10232B。在优化后的发酵条件下,采用10L 发酵罐进行分批乙醇发酵,经过18h,乙醇的最终浓度达到88.5g/L,发酵效率93.6%,平均乙醇生产速度达到4.92 g/L/h。此菌株在保持较高乙醇生产浓度的同时,拥有快速生产乙醇的能力,适合作为快速乙醇发酵生产菌种。 由于鲜甘薯具有粘度大的特点,传统液化糖化处理很难在短时间内充分糖化原料;高粘度的醪液也难以进行管道输送,容易堵塞管路;同时,也会降低后续的乙醇发酵效率。 本文采用了快速粘度分析法对鲜甘薯糊化粘度特性进行了分析,进而对预处理条件进行了研究,在最佳预处理条件下,糖化2h 后,醪液葡萄糖值最高可达99.3,粘度4.5×104 mPa.s,而采用传统糖化工艺,醪液DE 值仅为85.8,粘度大于1.0×105 mPa.s。 此预处理方法也可用于快速糖化不加水的醪液。后续的乙醇发酵试验表明,通过此预处理方法获得的糖化醪液对乙醇发酵无负面影响。 在前期已实现了实验室水平的鲜甘薯燃料乙醇快速乙醇发酵基础上,进一步将发酵规模扩大到500L,在中试水平上对甘薯乙醇发酵进行了研究。结果表明在500L 中试规模,采用边糖化边发酵(SSF)工艺,在料液比为3∶1,发酵醪液最高粘度为6×104mPa.s 条件下,发酵37h,乙醇浓度达到了12.7%(v/v),发酵效率91%,发酵强度为2.7 g/(L•h)。与目前国内的薯类乙醇发酵生产技术水平具有明显的优越性。 为研究甘薯、木薯乙醇发酵中残糖的组成,采用了高效液相色谱—蒸发光散射检测法,对乙醇发酵残糖进行了分析。结果表明,甘薯、木薯乙醇发酵残糖均为寡聚糖,主要由葡萄糖、木糖、半乳糖、阿拉伯糖和甘露糖构成。随着发酵时间延长,寡聚糖中的葡萄糖、半乳糖、甘露糖可被缓慢的水解释放。提高糖化酶量仅在一定程度上降低残糖,过量的糖化酶反而会导致残糖增加。同时发现3, 5-二硝基水杨酸法不能准确测定甘薯、木薯乙醇发酵中的残总糖含量。进一步筛选了两株残糖降解菌株,对甘薯乙醇发酵残糖的降解利用率均达到了40%以上,而且还能显著降低发酵醪液粘度。经形态学和rRNA ITS 序列分析,确定这两株菌分别属于为木霉属和曲霉属黑曲霉组。 通过对以甘薯原料为代表的非粮原料发酵技术研究开发,以期形成乙醇转化率高,能耗低,生产效率高、季节适应性好,原料适应性广,经济性强,符合清洁生产机制的燃料乙醇高效转化技术,为具有我国特色的燃料乙醇发展模式提供技术支持。 Sweet potato is one of the major feedstock for the fuel ethanol production in China. The planting area and the yield in China take 90% of the world. Sweet potato is an efficient kind of energy crops. The energy outcome per area is higher than corn or wheat. And the manufacture cost of ethanol is the lowest, compared with corn and wheat. So sweet potato is the favorable crop for the bioethanol production in China. However, the low-level fermentation technology restricts the development of ethanol production by sweet potato, including slow ethanol production rate, low ethanol concentration and high energy cost. To solve these problems, we conducted research on the strain breeding, pretreatment, pilot fermentation test and residual saccharides analysis. To study the impact of hyperbaric condition at bottom of the large fermentor on yeast fermentation, high pressure carbon dioxide (CO2) was adopted to simulate the situation. The results showed that the fermentation was prolonged with the increasing pressure. The pressure of CO2 had little impact on the ethanol yield which could reach 90% under the pressure below 0.3 MPa. The inhibition was combined by the high pressure and CO2. Under the high CO2 pressure, the extracellular and important intracellular enzyme activities were different from those under normal state. The changes under 0.1 MPa and 0.2 MPa were similar. The changes under 0.3 MPa were closer to those under 0.4 MPa. The application of thermotolerance yeast could solve the problem of the inconsistent temperature between fermentation and saccharificaton and fulfill the real simultaneous saccharification and fermentation. And it could reduce the cooling cost. A thermotolerance strain Y-H1 was isolated in our research. It gave high ethanol concentration of 10.7%(w/w)at 40 ℃ for 33 h. The ethanol yield efficiency was over 90%. At 40 ℃, the extracellular and important intracellular enzyme activities of Y-H1 showed the difference with normal state, which may indicate its physiological changes at the high temperature. Molasses is another feedstock for industrial ethanol production. By our ethanol-tolerance strain and the regulation reagents, the fermentation with high ethanol concentration was investigated. In fed-batch mode combined with cold acid deposition, the highest ethanol concentration was 10.26% (w/w) for 42h. The aldehyde concentration in fermentation was found to be related to ethanol concentration. The development of a rapid ethanol fermentation strain of Zymomonas mobilis is essential for reducing the cost of ethanol production and for the timely utilization of fresh material that is easily decayed in the Chinese bioethanol industry. A mutant Z. mobilis strain, 10232B, was generated by UV mutagenesis. Under these optimized conditions, fermentation of the mutant Z. mobilis 10232B strain was completed in just 18 h with a high ethanol production rate, at an average of 4.92 gL-1h-1 per batch. The final maximum ethanol concentration was 88.5 gL-1, with an ethanol yield efficiency of 93.6%. This result illustrated the potential use of the mutant Z. mobilis 10232B strain in rapid ethanol fermentation in order to help reduce the cost of industrial ethanol production. As fresh sweet potato syrup shows high viscosity, it is hard to be fully converted to glucose by enzymes in the traditional saccharification process. The high-viscosity syrup is difficult to be transmitted in pipes, which may be easily blocked. Meanwhile it could also reduce the later ethanol fermentation efficiency. To solve these problems, effects of the pretreatment conditions were investigated. The highest dextrose equivalent value of 99.3 and the lowest viscosity of 4.5×104 mPa.s were obtained by the most favorable pretreatment conditions, while those of 85.8 and over 1.0×105 mPa.s was produced by traditional treatment conditions. The pretreatment could also be applied on the material syrup without adding water. The later experiments showed that the pretreated syrup had no negative effect on the ethanol fermentation and exhibited lower viscosity. The fuel ethanol rapid production from fresh sweet potato was enlarged in the 500L pilot scale after its fulfillment on the laboratory level. The optimal ratio of material to water was 3 to 1 in 500L fermentor. With low-temperature-cooking (85 ℃) using SSF, the Saccharomyces cerevisiae was able to produce ethanol 97.44 g/kg for 37h, which reached 92% of theoretical yield. The average ethanol production rate was 4.06 g/kg/h. And the maximum viscosity of syrup reached 6×104mPa.s. The results showed its superiority over current industrial ethanol fermentation. The compositions of the residual saccharides in the ethanol fermentation by sweet potato and cassava were analyzed by high performance liquid chromatography coupled with evaporative light-scattering detector. The results showed that all the residual saccharides were oligosaccharides, mainly composed of glucose, xylose, galactose, arabinose and mannose. The glucose, galactose and mannose could be slowly hydrolyzed from oligosaccharides in syrup during a long period. To increase the glucoamylase dosage could lower the residual saccharides to a certain extent. However, excess glucoamylase dosage led to more residual saccharides. And the method of 3, 5-dinitrosalicylic acid could not accurately quantify the residual total saccharides content. Two residual saccharides degrading strains were isolated, which could utilize 40% of total residual saccharide and lower the syrup viscosity. With the analysis of morphology and internal transcribed spacer sequence, they were finally identified as species of Trichoderma and Aspergillus niger.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado apresentada à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Psicologia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Medicina Dentária

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research project takes place within the technology acceptability framework which tries to understand the use made of new technologies, and concentrates more specifically on the factors that influence multi-touch devices’ (MTD) acceptance and intention to use. Why be interested in MTD? Nowadays, this technology is used in all kinds of human activities, e.g. leisure, study or work activities (Rogowski and Saeed, 2012). However, the handling or the data entry by means of gestures on multi-touch-sensitive screen imposes a number of constraints and consequences which remain mostly unknown (Park and Han, 2013). Currently, few researches in ergonomic psychology wonder about the implications of these new human-computer interactions on task fulfillment.This research project aims to investigate the cognitive, sensori-motor and motivational processes taking place during the use of those devices. The project will analyze the influences of the use of gestures and the type of gesture used: simple or complex gestures (Lao, Heng, Zhang, Ling, and Wang, 2009), as well as the personal self-efficacy feeling in the use of MTD on task engagement, attention mechanisms and perceived disorientation (Chen, Linen, Yen, and Linn, 2011) when confronted to the use of MTD. For that purpose, the various above-mentioned concepts will be measured within a usability laboratory (U-Lab) with self-reported methods (questionnaires) and objective indicators (physiological indicators, eye tracking). Globally, the whole research aims to understand the processes at stakes, as well as advantages and inconveniences of this new technology, to favor a better compatibility and adequacy between gestures, executed tasks and MTD. The conclusions will allow some recommendations for the use of the DMT in specific contexts (e.g. learning context).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper analyzes a class of common-component allocation rules, termed no-holdback (NHB) rules, in continuous-review assemble-to-order (ATO) systems with positive lead times. The inventory of each component is replenished following an independent base-stock policy. In contrast to the usually assumed first-come-first-served (FCFS) component allocation rule in the literature, an NHB rule allocates a component to a product demand only if it will yield immediate fulfillment of that demand. We identify metrics as well as cost and product structures under which NHB rules outperform all other component allocation rules. For systems with certain product structures, we obtain key performance expressions and compare them to those under FCFS. For general product structures, we present performance bounds and approximations. Finally, we discuss the applicability of these results to more general ATO systems. © 2010 INFORMS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An enterprise information system (EIS) is an integrated data-applications platform characterized by diverse, heterogeneous, and distributed data sources. For many enterprises, a number of business processes still depend heavily on static rule-based methods and extensive human expertise. Enterprises are faced with the need for optimizing operation scheduling, improving resource utilization, discovering useful knowledge, and making data-driven decisions.

This thesis research is focused on real-time optimization and knowledge discovery that addresses workflow optimization, resource allocation, as well as data-driven predictions of process-execution times, order fulfillment, and enterprise service-level performance. In contrast to prior work on data analytics techniques for enterprise performance optimization, the emphasis here is on realizing scalable and real-time enterprise intelligence based on a combination of heterogeneous system simulation, combinatorial optimization, machine-learning algorithms, and statistical methods.

On-demand digital-print service is a representative enterprise requiring a powerful EIS.We use real-life data from Reischling Press, Inc. (RPI), a digit-print-service provider (PSP), to evaluate our optimization algorithms.

In order to handle the increase in volume and diversity of demands, we first present a high-performance, scalable, and real-time production scheduling algorithm for production automation based on an incremental genetic algorithm (IGA). The objective of this algorithm is to optimize the order dispatching sequence and balance resource utilization. Compared to prior work, this solution is scalable for a high volume of orders and it provides fast scheduling solutions for orders that require complex fulfillment procedures. Experimental results highlight its potential benefit in reducing production inefficiencies and enhancing the productivity of an enterprise.

We next discuss analysis and prediction of different attributes involved in hierarchical components of an enterprise. We start from a study of the fundamental processes related to real-time prediction. Our process-execution time and process status prediction models integrate statistical methods with machine-learning algorithms. In addition to improved prediction accuracy compared to stand-alone machine-learning algorithms, it also performs a probabilistic estimation of the predicted status. An order generally consists of multiple series and parallel processes. We next introduce an order-fulfillment prediction model that combines advantages of multiple classification models by incorporating flexible decision-integration mechanisms. Experimental results show that adopting due dates recommended by the model can significantly reduce enterprise late-delivery ratio. Finally, we investigate service-level attributes that reflect the overall performance of an enterprise. We analyze and decompose time-series data into different components according to their hierarchical periodic nature, perform correlation analysis,

and develop univariate prediction models for each component as well as multivariate models for correlated components. Predictions for the original time series are aggregated from the predictions of its components. In addition to a significant increase in mid-term prediction accuracy, this distributed modeling strategy also improves short-term time-series prediction accuracy.

In summary, this thesis research has led to a set of characterization, optimization, and prediction tools for an EIS to derive insightful knowledge from data and use them as guidance for production management. It is expected to provide solutions for enterprises to increase reconfigurability, accomplish more automated procedures, and obtain data-driven recommendations or effective decisions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper considers the single machine due date assignment and scheduling problems with n jobs in which the due dates are to be obtained from the processing times by adding a positive slack q. A schedule is feasible if there are no tardy jobs and the job sequence respects given precedence constraints. The value of q is chosen so as to minimize a function ϕ(F,q) which is non-decreasing in each of its arguments, where F is a certain non-decreasing earliness penalty function. Once q is chosen or fixed, the corresponding scheduling problem is to find a feasible schedule with the minimum value of function F. In the case of arbitrary precedence constraints the problems under consideration are shown to be NP-hard in the strong sense even for F being total earliness. If the precedence constraints are defined by a series-parallel graph, both scheduling and due date assignment problems are proved solvable in time, provided that F is either the sum of linear functions or the sum of exponential functions. The running time of the algorithms can be reduced to if the jobs are independent. Scope and purpose We consider the single machine due date assignment and scheduling problems and design fast algorithms for their solution under a wide range of assumptions. The problems under consideration arise in production planning when the management is faced with a problem of setting the realistic due dates for a number of orders. The due dates of the orders are determined by increasing the time needed for their fulfillment by a common positive slack. If the slack is set to be large enough, the due dates can be easily maintained, thereby producing a good image of the firm. This, however, may result in the substantial holding cost of the finished products before they are brought to the customer. The objective is to explore the trade-off between the size of the slack and the arising holding costs for the early orders.