980 resultados para fiber matrix


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In brittle composites, such as whisker reinforced ceramics, the sliding of reinforcing fibers against the frictional resistance of matrix is of a pseudo-plastic deformation mechanism. High aspect-ratio whiskers possess larger pseudo-plastic deformation ability but are usually sparse, while, low aspect-ratio ones were distributed widely in the matrix and show low pseudo-plastic deformation ability (engagement effect), also. A comparative investigation was carried out in present study based on a multi-scale network model. The results indicate that the effect of low aspect-ratio whiskers is of most importance. Improving the engagement coefficient by raising the compactness of material seems a more practical way for optimization of discontinuous fiber-reinforced brittle composites in the present technological condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A material model for whisker-reinforced metal-matrix composites is constructed that consists of three kinds of essential elements: elastic medium, equivalent slip system, and fiber-bundle. The heterogeneity of material constituents in position is averaged, while the orientation distribution of whiskers and slip systems is considered in the structure of the material model. Crystal and interface sliding criteria are addressed. Based on the stress-strain response of the model material, an elasto-plastic constitutive relation is derived to discuss the initial and deformation induced anisotropy as well as other fundamental features. Predictions of the present theory for unidirectional-fiber-reinforced aluminum matrix composites are favorably compared with FEM results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on studies on the strain distribution in short-fiber/whisker reinforced metal matrix composites, a deformation characteristic parameter, lambda is defined as a ratio of root-mean-square strain of the reinforcers identically oriented to the macro-linear strain along the same direction. Quantitative relation between lambda and microstructure parameters of composites is obtained. By using lambda, the stiffness moduli of composites with arbitrary reinforcer orientation density function and under arbitrary loading condition are derived. The upper-bound and lower-bound of the present prediction are the same as those from the equal-strain theory and equal-stress theory, respectively. The present theory provides a physical explanation and theoretical base for the present commonly-used empirical formulae. Compared with the microscopic mechanical theories, the present theory is competent for stiffness modulus prediction of practical engineering composites in accuracy and simplicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interlaminar fracture behaviour of carbon fibre-reinforced bismaleimide (BMI) composites prepared by using a new modified BMI matrix has been investigated by various methods. Laminates of three typical stacking sequences were evaluated. Double cantilever beam, end-notch flexure and edge-delamination tension tests were conducted under conventional conditions and in a scanning electron microscope. The strain energy release rates in Mode I and Mode III G(lc) and G(llc), as well as the total strain energy release rate, G(mc), have been determined and found to be higher than those for laminates with an epoxy matrix. Dynamic delamination propagation was also studied. The toughening mechanisms are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most space applications require deployable structures due to the limiting size of current launch vehicles. Specifically, payloads in nanosatellites such as CubeSats require very high compaction ratios due to the very limited space available in this typo of platform. Strain-energy-storing deployable structures can be suitable for these applications, but the curvature to which these structures can be folded is limited to the elastic range. Thanks to fiber microbuckling, high-strain composite materials can be folded into much higher curvatures without showing significant damage, which makes them suitable for very high compaction deployable structure applications. However, in applications that require carrying loads in compression, fiber microbuckling also dominates the strength of the material. A good understanding of the strength in compression of high-strain composites is then needed to determine how suitable they are for this type of application.

The goal of this thesis is to investigate, experimentally and numerically, the microbuckling in compression of high-strain composites. Particularly, the behavior in compression of unidirectional carbon fiber reinforced silicone rods (CFRS) is studied. Experimental testing of the compression failure of CFRS rods showed a higher strength in compression than the strength estimated by analytical models, which is unusual in standard polymer composites. This effect, first discovered in the present research, was attributed to the variation in random carbon fiber angles respect to the nominal direction. This is an important effect, as it implies that microbuckling strength might be increased by controlling the fiber angles. With a higher microbuckling strength, high-strain materials could carry loads in compression without reaching microbuckling and therefore be suitable for several space applications.

A finite element model was developed to predict the homogenized stiffness of the CFRS, and the homogenization results were used in another finite element model that simulated a homogenized rod under axial compression. A statistical representation of the fiber angles was implemented in the model. The presence of fiber angles increased the longitudinal shear stiffness of the material, resulting in a higher strength in compression. The simulations showed a large increase of the strength in compression for lower values of the standard deviation of the fiber angle, and a slight decrease of strength in compression for lower values of the mean fiber angle. The strength observed in the experiments was achieved with the minimum local angle standard deviation observed in the CFRS rods, whereas the shear stiffness measured in torsion tests was achieved with the overall fiber angle distribution observed in the CFRS rods.

High strain composites exhibit good bending capabilities, but they tend to be soft out-of-plane. To achieve a higher out-of-plane stiffness, the concept of dual-matrix composites is introduced. Dual-matrix composites are foldable composites which are soft in the crease regions and stiff elsewhere. Previous attempts to fabricate continuous dual-matrix fiber composite shells had limited performance due to excessive resin flow and matrix mixing. An alternative method, presented in this thesis uses UV-cure silicone and fiberglass to avoid these problems. Preliminary experiments on the effect of folding on the out-of-plane stiffness are presented. An application to a conical log-periodic antenna for CubeSats is proposed, using origami-inspired stowing schemes, that allow a conical dual-matrix composite shell to reach very high compaction ratios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the formulation of an ABCD matrix for reflection and refraction of Gaussian light beams at the surface of a parabola of revolution that separate media of different refractive indices based on optical phase matching. The equations for the spot sizes and wave-front radii of the beams are also obtained by using the ABCD matrix. With these matrices, we can more conveniently design and evaluate some special optical systems, including these kinds of elements. (c) 2005 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the exchange coupling theory was proposed by Kneller and Hawig in 1991 there has been a significant effort within the magnetic materials community to enhance the performance of rare earth magnets by utilising nano-composite meta-materials. Inclusions of magnetically soft iron smaller than approximately 10 nm in diameter are exchange coupled to a surrounding magnetically hard Nd2Fe14B matrix and provide an enhanced saturisation magnetisation without reducing coercivity. For such a fine nanostructure to be produced, close control over the thermal history of the material is needed. A processing route which provides this is laser annealing from an amorphous alloy precursor. In the current work, relationships between laser parameters, thermal histories of laser processed amorphous stoichiometric NdFeB ribbons and the magnetic properties of the resulting nanocrystalline products have been determined with a view to applying the process to thick film nanocomposite magnet production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of a porous coating on prosthetic components to encourage bone ingrowth is an important way of improving uncemented implant fixation. Enhanced fixation may be achieved by the use of porous magneto-active layers on the surface of prosthetic implants, which would deform elastically on application of a magnetic field, generating internal stresses within the in-growing bone. This approach requires a ferromagnetic material able to support osteoblast attachment, proliferation, differentiation, and mineralization. In this study, the human osteoblast responses to ferromagnetic 444 stainless steel networks were considered alongside those to nonmagnetic 316L (medical grade) stainless steel networks. While both networks had similar porosities, 444 networks were made from coarser fibers, resulting in larger inter-fiber spaces. The networks were analyzed for cell morphology, distribution, proliferation, and differentiation, extracellular matrix production and the formation of mineralized nodules. Cell culture was performed in both the presence of osteogenic supplements, to encourage cell differentiation, and in their absence. It was found that fiber size affected osteoblast morphology, cytoskeleton organization and proliferation at the early stages of culture. The larger inter-fiber spaces in the 444 networks resulted in better spatial distribution of the extracellular matrix. The addition of osteogenic supplements enhanced cell differentiation and reduced cell proliferation thereby preventing the differences in proliferation observed in the absence of osteogenic supplements. The results demonstrated that 444 networks elicited favorable responses from human osteoblasts, and thus show potential for use as magnetically active porous coatings for advanced bone implant applications. © 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New materials are needed to replace degenerated intervertebral disc tissue and to provide longer-term solutions for chronic back-pain. Replacement tissue potentially could be engineered by seeding cells into a scaffold that mimics the architecture of natural tissue. Many natural tissues, including the nucleus pulposus (the central region of the intervertebral disc) consist of collagen nanofibers embedded in a gel-like matrix. Recently it was shown that electrospun micro- or nano-fiber structures of considerable thickness can be produced by collecting fibers in an ethanol bath. Here, randomly aligned polycaprolactone electrospun fiber structures up to 50 mm thick are backfilled with alginate hydrogels to form novel composite materials that mimic the fiber-reinforced structure of the nucleus pulposus. The composites are characterized using both indentation and tensile testing. The composites are mechanically robust, exhibiting substantial strain-to-failure. The method presented here provides a way to create large biomimetic scaffolds that more closely mimic the composite structure of natural tissue. © 2012 Materials Research Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel fiber coated with novel sol-gel (5,11,17,23-tetra-tert-butyl-25,27-dihydroxy-26,28-diglycidyloxycalix[4]arene/hydroxy-terminated silicone oil; diglycidyloxy-C[4]/OH-TSO) was prepared for use with headspace solid-phase microextraction (HS-SPME) combined with gas chromatography (GC) and electron capture detection (ECD), which was applied in order to determine nine chlorobenzenes in soil matrices. Due to the improved fiber preparation, which increases the percentage of calixarene in the coating, the new calixarene fiber exhibits very high extraction selectivity and sensitivity to chlorine-substituted compounds. Various parameters affecting the extraction efficiency were optimized in order to maximize the sensitivity during the chlorobenzene analysis. Interferences from different soil matrices with different characteristics were investigated, and the amount extracted was strongly influenced by the matrix. Therefore, a standard addition protocol was performed on the real soil samples. The linear ranges of detection for the chlorobenzenes tested covered three orders of magnitude, and correlation coefficients > 0.9976 and relative standard deviations (RSD) < 8% were observed. The detection limits were found at sub-ng/g of soil levels, which were about an order of magnitude lower than those given by the commercial poly(dimethylsiloxane) (PDMS) coating for most of the compounds. The recoveries ranged from 64 to 109.6% for each analyte in the real kaleyard soil matrix when different concentration levels were determined over the linear range, which confirmed the reliability and feasibility of the HS-SPME/GC-ECD approach using the fiber coated with diglycidyloxy-C[4]/OH-TSO for the ultratrace analysis of chlorobenzenes in complex matrices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Si-based optoelectronic devices, including stimulated emission from Si diode, 1.3 and 1.5mum SiGe photodetector with quantum structures, 1GHz MOS optical modulator, SOI optical switch matrix and wavelength tunable filter are reviewed in the paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scattering matrix method is used to analyze the multiple reflection effect between the laser diode facet and the fiber grating facet by considering the fiber grating external cavity laser diode (FGECL) as a four-mirror cavity laser. When neglecting other important parameters such as butt-coupling distance between the diode and the fiber facets, coupling efficiency, external cavity length, it is shown that low reflectivity is not a crucial factor for the laser characteristics such as SMSR. Experimentally high SMSR fiber grating external cavity laser is fabricated with a relatively large residual facet reflectivity (about 1%), which is coincident with our simulation results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solutions for fiber-optical parametric amplifiers (FOPAs) with dispersion fluctuations are derived using matrix operators. On the basis of the propagation matrix product and the hybrid genetic algorithm, we have optimized and compared single- and dual-pump FOPAs with zero-dispersion-wavelength variations. The simulations prove that the design of FOPAs involves multimodal function optimization problems. The numerical results show that dual-pump FOPAs are highly sensitive to dispersion fluctuations whereas dispersion variations have less impact on the gain of single-pump FOPAs. To increase signal gain and reduce ripple, dual-pump FOPAs, instead of single-pump FOPAs, have to be carefully optimized with a suitable multisegment fiber structure rather than a one-segment fiber structure. The different combinations of multisegment fibers can provide highly different gain properties. The increase in gain is at the cost of the ripple.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we report an optical fluoride probe based on microstructured polymer optical fibers (MPOFs) which is modified with morin-Al complex doped silica gel film. This probe is fabricated by sol-gel fluxion coating process. Sol solution doped with morin-Al is directly inhaled into array holes of MPOF and then forms morin-Al-gel matrix film in them. The sensing probe shows different fluorescence intensity to different fluoride ion concentrations in the aqueous solution. The range of response is 550 mmol/L, under the condition of pH 4.6. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The butt-coupling between a semiconductor laser diode and a fiber Bragg grating external cavity acts a key roll on the laser characteristics. The scatter matrix method considering the butt-coupling efficiency is used to analyze the butt-coupling between them. It is found that the butt-coupling distance and coupling efficiency determine the laser characteristics. For strong feedback, the single lasing wavelength changes in the reflection bandwidth of the effective reflectivity ( approximately the Bragg region of the fiber Bragg grating) as the distances change. For weak feedback condition, some different results are obtained. The SMSRs in the two conditions are presented and analyzed. These results can provide important design guidance of device parameters for the practical fabrication.