889 resultados para ferromagnetic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We synthesize Co nanorod filled inside multi-walled CNTs (MWCNTs) by microwave plasma enhanced chemical vapor deposition (MPECVD) and utilize off-axis electron holography to observe the remanent states of the filled metal nanorod inside MWCNTs at room. The MWCNTs grew up to 100-110 nm in diameter and 1.5-1.7 μm in length. The typical bright-field transmission electron microscope (TEM) images revealed both Co/Pd multisegment nanorod and Co nanorod filled inside MWCNTs on the same substrate. We have also performed energy-dispersive X-ray spectrometer (EDS) measurements to characterize the composition of metal filled inside MWCNTs. Based on high-resolution TEM measurements, we observed the face-centered-cubic (fcc) Co filled inside MWCNT. The component of magnetic induction was then measured to be 1.2±0.1 T, which is lower than the expected saturation magnetization of fcc Co of 1.7 T. The partial oxidation of the ferromagnetic metal during the process and the magnetization direction may play an important role in the determination of the quality of the remanent states. © 2008 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that filling the holes of a drilled bulk high-temperature superconductor (HTS) with a soft ferromagnetic powder enhances its trapping properties. The magnetic properties of the trapped field magnet are characterized by Hall probe mapping and magnetization measurements. This analysis is completed by a numerical model based on a 3D finite-element method where the conductivity of the superconducting material is described by a power law while the permeability of the ferromagnetic material is fixed to a given value and is considered uniform. Numerical results support the experimental observations. In particular, they confirm the increase of trapped flux that is observed with Hall probe mapping after impregnation. © 2011 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the magnetic shielding properties of hybrid ferromagnetic/ superconductor (F/S) structures consisting of two coaxial cylinders, with one of each material. We use an axisymmetric finite-element model in which the electrical properties of the superconducting tube are modeled by a nonlinear E-J power law with a magnetic-field-dependent critical current density whereas the magnetic properties of the ferromagnetic material take saturation into account. We study and compare the penetration of a uniform axial magnetic field in two cases: 1) a ferromagnetic tube placed inside a larger superconducting tube (Ferro-In configuration) and 2) a ferromagnetic tube placed outside the superconducting one (Ferro-Out configuration). In both cases, we assess how the ferromagnetic tube improves the shielding properties of the sole superconducting tube. The influence of the geometrical parameters of the ferromagnetic tube is also studied: It is shown that, upon an optimal choice of the geometrical parameters, the range of magnetic fields that are efficiently shielded by the high-temperature superconductor tube alone can be increased by a factor of up to 7 (2) in a Ferro-Out (Ferro-In) configuration. The optimal configuration uses a 1020 carbon steel with a thickness of 2 mm and a height that is half that of the superconducting cylinder (80 mm). © 2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors report an intriguing resistivity versus magnetic field dependence in polycrystalline composite samples containing a magnetoresistive manganite (ferromagnetic/conducting La0.7 Ca0.3 Mn O3) and a magnetic manganese oxide (ferrimagnetic/insulating Mn3 O4). At 10 K, when the magnetic field is scanned from positive to negative values, the resistance peak occurs at positive magnetic field, instead of zero or negative field as usually observed in polycrystalline manganite samples. The position of the resistance peak agrees well with the cancellation of the internal magnetic field, suggesting that the demagnetization effects are responsible for this behavior. © 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large grain, bulk Y-Ba-Cu-O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surface of a solid, bulk HTS cylinder. The effect of these modifications on the magnetic hysteresis curve and trapped field of the bulk superconductor at 77 K are then studied using pick-up coil and Hall probe measurements. The experimental data are compared to finite element modelling of the magnetic flux distribution using Campbell's algorithm. Initially we establish the validity of the technique involving pick-up coils wrapped around the bulk superconductor to obtain its magnetic hysteresis curve in a non-destructive way and highlight the difference between the measured signal and the true magnetization of the sample. We then consider the properties of hybrid ferromagnet/superconductor (F/S) structures. Hall probe measurements, together with the results of the model, establish that flux lines curve outwards through the ferromagnet, which acts, effectively, like a magnetic short circuit. Magnetic hysteresis curves show that the effects of the superconductor and the ferromagnet simply add when the ferromagnet is saturated fully by the applied field. The trapped field of the hybrid structure is always larger than that of the superconductor alone below this saturation level, and especially when the applied field is removed. The results of the study show further that the beneficial effects on the trapped field are enhanced when the ferromagnet covers the entire surface of the superconductor for different ferromagnetic components of various shapes and fixed volume. © 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By chopping a pump beam in conventional time-resolved Kerr rotation (TRKR) experiments and measuring the time evolution of M-shaped "major" hysteresis loops of magnetic linear dichroism (Delta MLD = MLDpump-on MLDpump-off), the differential MLD signal in the presence and the absence of the pump beam, we studied the dynamics of photo-enhanced magneto-crystalline anisotropy, and found that its very long recovering time (much longer than 13 ns) might reflect the nature of the coherent coupling between photo-excited holes and localized spins in the d shell of manganese.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural and magnetic properties of Cu+ ions-implanted GaN films have been reported. Eighty kilo-electron-volt Cu+ ions were implanted into n-type GaN film at room temperature with fluences ranging from 1 x 10(16) to 8 x 10(16) cm(-2) and subsequently annealed at 800 degrees C for 1 h in N-2 ambient. PIXE was employed to determine the Cu-implanted content. The magnetic property was measured by the Quantum Design MPMS SQUID magnetometer. No secondary phases or clusters were detected within the sensitivity of XRD. Raman spectrum measurement showed that the Cu ions incorporated into the crystal lattice positions of GaN through substitution of Ga atoms. Apparent ferromagnetic hysteresis loops measured at 10 K were presented. The experimental result showed that the ferromagnetic signal strongly increased with Cu-implanted fluence from 1 x 10(16) to 8 x 10(16) cm(-2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the low-temperature magnetotransport behaviors of (Ga,Mn)As films with the nominal Mn concentration x larger than 10%. The ferromagnetic transition temperature T-C can be enhanced to 191 K after postgrowth annealing (Ga,Mn)As with x=20%. The temperature T-m, corresponding to the resistivity minimum in the curve of resistivity versus temperature at temperature below T-C, depends on Mn concentration, annealing condition, and magnetic field. Moreover, we find that the variable-range hopping may be the main conductive mechanism when temperature is lower than T-m.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different submicron ferromagnets are fabricated into GaAs and GaAs/AlGaAs superlattice through ion implantation at two different temperatures followed by thermal annealing. The structural and magnetic properties of the granular film are studied by an atomic force microscope, X-ray diffraction and alternating gradient magnetometer. By analyzing the saturation magnetization M-s, remanence M-r, coercivity H-c and remanence ratio S-q, it is confirmed that both MnGa and MnAs clusters are formed in the 350degreesC-implanted samples whereas only MnAs clusters are formed in the room-temperature implanted samples. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diluted magnetic semiconductor (Ga,Mn)N were prepared by the implantation of Mn ions into GaN/Al2O3 substrate. Clear X-ray diffraction peak from (Ga,Mn)N is observed. It indicates that the solid solution (Ga,Mn)N phase was formed with the same lattice structure as GaN and different lattice constant. Magnetic hysteresis-loops of the (Ga,Mn)N were obtained at room temperature (293 K) with the coercivity of about 2496.97 A m(-1). (C) 2003 Elsevier B.V. All rights reserved.