878 resultados para compressive load
Resumo:
Refractory castables are composed of fractions of fine to fairly coarse particles. The fine fraction is constituted primarily of raw materials and calcium aluminate cement, which becomes hydrated, forming chemical bonds that stiffen the concrete during the curing process. The present study focused on an evaluation of several characteristics of two refractory castables with similar chemical compositions but containing aggregates of different sizes. The features evaluated were the maximum load, the fracture energy, and the ""relative crack-propagation work"" of the two castables heat-treated at 110, 650, 1100 and 1550 degrees C. The results enabled us to draw the following conclusions: the heat treatment temperature exerts a significant influence on the matrix/aggregate interaction, different microstructures form in the castables with temperature, and a relationship was noted between the maximum load and the fracture energy. (C) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
This paper presents the experimental results of 32 axially loaded concrete-filled steel tubular columns (CFT). The load was introduced only on the concrete core by means of two high strength steel cylinders placed at the column ends to evaluate the passive confinement provided by the steel tube. The columns were filled with structural concretes with compressive strengths of 30, 60, 80 and 100 MPa. The outer diameter (D) of the column was 114.3 mm, and the length/diameter (L/D) ratios considered were 3, 5, 7 and 10. The wall thicknesses of the tubes (t) were 3.35 mm and 6.0 mm, resulting in diameter/thickness (D/t) ratios of 34 and 19, respectively. The force vs. axial strain curves obtained from the tests showed, in general, a good post-peak behavior of the CFT columns, even for those columns filled with high strength concrete. Three analytical models of confinement for short concrete-filled columns found in the literature were used to predict the axial capacity of the columns tested. To apply these models to slender columns, a correction factor was introduced to penalize the calculated results, giving good agreement with the experimental values. Additional results of 63 CFT columns tested by other researchers were also compared to the predictions of the modified analytical models and presented satisfactory results. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents an experimental analysis of the confinement effects in steel-concrete composite columns regarding two parameters: concrete compressive strength and column slenderness. Sixteen concrete-filled steel tubular columns with circular cross section were tested under axial loading. The tested columns were filled by concrete with compressive strengths of 30, 60. 80, and 100 MPa, and had length/diameter ratios of 3, 5, 7, and 10. The experimental values of the columns` ultimate load were compared to the predictions of 4 code provisions: the Brazilian Code NBR 8800:2008, Eurocode 4 (EN 1994-1-1:2004), AINSI/AISC 360:2005, and CAN/CSA S16-01:2001. According to the results, the load capacity of the composite columns increased with increasing concrete strength and decreased with increasing length/diameter ratio. In general, the code provisions were highly accurate in the prediction of column capacity. Among them, the Brazilian Code was the most conservative, while Eurocode 4 presented the values closest to the experimental results. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper results of tests on 32 concrete-filled steel tubular columns under axial load are reported. The test parameters were the concrete compressive strength, the column slenderness (L/D) and the wall thickness (t). The test results were compared with predictions from the codes NBR 8800:2008 and EN 1994-1-1:2004 (EC4). The columns were 3, 5, 7 and 10 length to diameter ratios (L/D) and were tested with 30MPa, 60MPa, 80MPa and 100MPa concrete compressive strengths. The results of ultimate strength predicted by codes showed good agreement with experimental results. The results of NBR 8800 code were the most conservative and the EC4 showed the best results, in mean, but it was not conservative for usual concrete-filled short columns.
Resumo:
The central issue for pillar design in underground coal mining is the in situ uniaxial compressive strength (sigma (cm)). The paper proposes a new method for estimating in situ uniaxial compressive strength in coal seams based on laboratory strength and P wave propagation velocity. It describes the collection of samples in the Bonito coal seam, Fontanella Mine, southern Brazil, the techniques used for the structural mapping of the coal seam and determination of seismic wave propagation velocity as well as the laboratory procedures used to determine the strength and ultrasonic wave velocity. The results obtained using the new methodology are compared with those from seven other techniques for estimating in situ rock mass uniaxial compressive strength.
Resumo:
Three-dimensional discretizations used in numerical analyses of tunnel construction normally include excavation step lengths much shorter than tunnel cross-section dimensions. Simulations have usually worked around this problem by using excavation steps that are much larger than the actual physical steps used in a real tunnel excavation. In contrast, the analyses performed in this study were based on finely discretized meshes capable of reproducing the excavation lengths actually used in tunnels, and the results obtained for internal forces are up to 100% greater than those found in other analyses available in the literature. Whereas most reports conclude that internal forces depend on support delay length alone, this study shows that geometric path dependency (reflected by excavation round length) is very strong, even considering linear elasticity. Moreover, many other solutions found in the literature have also neglected the importance of the relative stiffness between the ground mass and support structure, probably owing to the relatively coarse meshes used in these studies. The analyses presented here show that relative stiffness may account for internal force discrepancies in the order of 60%. A dimensionless expression that takes all these parameters into account is presented as a good approximation for the load transfer mechanism at the tunnel face.
Resumo:
A study was performed regarding the effect of the relation between fill time, volume treated per cycle, and influent concentration at different applied organic loadings on the stability and efficiency of an anaerobic sequencing batch reactor containing immobilized biomass on polyurethane foam with recirculation of the liquid phase (AnSBBR) applied to the treatment of wastewater from a personal care industry. Total cycle length of the reactor was 8 h (480 min). Fill times were 10 min in the batch operation, 4 h in the fed-batch operation, and a 10-min batch followed by a 4-h fed batch in the mixed operation. Settling time was not necessary since the biomass was immobilized and decant time was 10 min. Volume of liquid medium in the reactor was 2.5 L, whereas volume treated per cycle ranged from 0.88 to 2.5 L in accordance with fill time. Influent concentration varied from 300 to 1,425 mg COD/L, resulting in an applied volumetric organic load of 0.9 and 1.5 g COD/L.d. Recirculation flow rate was 20 L/h, and the reactor was maintained at 30 A degrees C. Values of organic matter removal efficiency of filtered effluent samples were below 71% in the batch operations and above 74% in the operations of fed batch followed by batch. Feeding wastewater during part of the operational cycle was beneficial to the system, as it resulted in indirect control over the conversion of substrate into intermediates that would negatively interfere with the biochemical reactions regarding the degradation of organic matter. As a result, the average substrate consumption increased, leading to higher organic removal efficiencies in the fed-batch operations.
Resumo:
An investigation was performed regarding the application of a mechanically stirred anaerobic sequencing batch biofilm reactor containing immobilized biomass on inert polyurethane foam (AnSBBR) to the treatment of soluble metalworking fluids to remove organic matter and produce methane. The effect of increasing organic matter and reactor fill time, as well as shock load, on reactor stability and efficiency have been analyzed. The 5-L AnSBBR was operated at 30 A degrees C in 8-h cycles, agitation of 400 rpm, and treated 2.0 L effluent per cycle. Organic matter was increased by increasing the influent concentration (500, 1,000, 2,000, and 3,000 mg chemical oxygen demand (COD)/L). Fill times investigated were in the batch mode (fill time 10 min) and fed-batch followed by batch (fill time 4 h). In the batch mode, organic matter removal efficiencies were 87%, 86%, and 80% for influent concentrations of 500, 1,000, and 2,000 mgCOD/L (1.50, 3.12, and 6.08 gCOD/L.d), respectively. At 3,000 mgCOD/L (9.38 gCOD/L.d), operational stability could not be achieved. The reactor managed to maintain stability when a shock load twice as high the feed concentration was applied, evidencing the robustness of the reactor to potential concentration variations in the wastewater being treated. Increasing the fill time to 4 h did not improve removal efficiency, which was 72% for 2,000 mgCOD/L. Thus, gradual feeding did not improve organic matter removal. The concentration of methane formed at 6.08 gCOD/L was 5.20 mmolCH(4), which corresponded to 78% of the biogas composition. The behavior of the reactor during batch and fed-batch feeding could be explained by a kinetic model that considers organic matter consumption, production, and consumption of total volatile acids and methane production.
Resumo:
The removal of sulfate and organic matter was assessed in an ASBR, which treated wastewater containing 500 mg COD L(-1) (3 g COD L(-1) d(-1)) in 8 h-cycles at 30 degrees C. The wastewater was enriched with sulfate at [COD/SO(4)(2-]) ratios of 1.34, 0.67 and 0.34 (8.8,4.5 and 2.2 gSO(4)(2-) L(-1) d(-1)). For each COD/[SO(4)(2-)] ratio fill times used were: 10 min (batch), 3 and 6 h (fed-batch), achieving sulfate reduction of 30%, 72% and 72% (COD/[SO(4)(2-)] of 1.34); 25%, 58% and 55% (COD/[SO(4)(2-)] of 0.67) and 23%, 37% and 27% (COD/[SO(4)(2-)] of 0.34), respectively, and organic matter removal of 87%, 68% and 80% (COD/[SO(4)(2-)] of 1.34); 78%, 75% and 69% (COD/[SO(4)(2-)] of 0.67) and 85%, 84% and 83% (COD/[SO(4)(2-)] of 0.34), respectively. The results showed that fed-batch operation improved sulfate reduction, whereas organic matter removals were similar for batch and fed-batch operation. In addition, increase in sulfate loading in the fed-batch operation improved organic matter removal. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Currently, there is an increasing demand for the production of biodiesel and, consequently, there will be an increasing need to treat wastewaters resulting from the production process of this biofuel. The main objective of this work was, therefore, to investigate the effect of applied volumetric organic load (AVOL) on the efficiency, stability, and methane production of an anaerobic sequencing batch biofilm reactor applied to the treatment of effluent from biodiesel production. As inert support, polyurethane foam cubes were used in the reactor and mixing was accomplished by recirculating the liquid phase. Increase in AVOL resulted in a drop in organic matter removal efficiency and increase in total volatile acids in the effluent. AVOLs of 1.5, 3.0, 4.5 and 6.0 g COD L(-1) day(-1) resulted in removal efficiencies of 92%, 81%, 67%, and 50%, for effluent filtered samples, and 91%, 80%, 63%, and 47%, for non-filtered samples, respectively, whereas total volatile acids concentrations in the effluent amounted to 42, 145, 386 and 729 mg HAc L(-1), respectively. Moreover, on increasing AVOL from 1.5 to 4.5 g COD L(-1) day(-1) methane production increased from 29.5 to 55.5 N mL CH(4) g COD(-1). However, this production dropped to 36.0 N mL CH(4) g COD(-1) when AVOL was increased to 6.0 g COD L(-1) day(-1), likely due to the higher concentration of volatile acids in the reactor. Despite the higher concentration of volatile acids at the highest AVOL, alkalinity supplementation to the influent, in the form of sodium bicarbonate, at a ratio of 0.5-1.3 g NaHCO(3) g COD (fed) (-1) , was sufficient to maintain the pH near neutral and guarantee process stability during reactor operation.
Resumo:
The fatigue crack growth properties of friction stir welded joints of 2024-T3 aluminium alloy have been studied under constant load amplitude (increasing-Delta K), with special emphasis on the residual stress (inverse weight function) effects on longitudinal and transverse crack growth rate predictions (Glinka`s method). In general, welded joints were more resistant to longitudinally growing fatigue cracks than the parent material at threshold Delta K values, when beneficial thermal residual stresses decelerated crack growth rate, while the opposite behaviour was observed next to K-C instability, basically due to monotonic fracture modes intercepting fatigue crack growth in weld microstructures. As a result, fatigue crack growth rate (FCGR) predictions were conservative at lower propagation rates and non-conservative for faster cracks. Regarding transverse cracks, intense compressive residual stresses rendered welded plates more fatigue resistant than neat parent plate. However, once the crack tip entered the more brittle weld region substantial acceleration of FCGR occurred due to operative monotonic tensile modes of fracture, leading to non-conservative crack growth rate predictions next to K-C instability. At threshold Delta K values non-conservative predictions values resulted from residual stress relaxation. Improvements on predicted FCGR values were strongly dependent on how the progressive plastic relaxation of the residual stress field was considered.
Resumo:
A large percentage of pile caps support only one column, and the pile caps in turn are supported by only a few piles. These are typically short and deep members with overall span-depth ratios of less than 1.5. Codes of practice do not provide uniform treatment for the design of these types of pile caps. These members have traditionally been designed as beams spanning between piles with the depth selected to avoid shear failures and the amount of longitudinal reinforcement selected to provide sufficient flexural capacity as calculated by the engineering beam theory. More recently, the strut-and-tie method has been used for the design of pile caps (disturbed or D-region) in which the load path is envisaged to be a three-dimensional truss, with compressive forces being supported by concrete compressive struts between the column and piles and tensile forces being carried by reinforcing steel located between piles. Both of these models have not provided uniform factors of safety against failure or been able to predict whether failure will occur by flexure (ductile mode) or shear (fragile mode). In this paper, an analytical model based on the strut-and-tie approach is presented. The proposed model has been calibrated using an extensive experimental database of pile caps subjected to compression and evaluated analytically for more complex loading conditions. It has been proven to be applicable across a broad range of test data and can predict the failures modes, cracking, yielding, and failure loads of four-pile caps with reasonable accuracy.
Resumo:
In this study four irons were casted with different chromium and vanadium contents: 2.66% Cr, 5.01% Cr, 2.51% V and 5.19% V. Their microstructure is composed of: ledeburite, graphite and M(3)C carbides (cementite). Pin-abrasion tests were carried out using fixed alumina abrasive grains at different loads: 1, 2, 4.6 and 10 N. The wear surface and the abrasive paper were examined by scanning electron microscopy for identifying the wear micromechanism. The results reveal that the mass loss increased with the load increase, and the effect of the percentage of chromium on mass loss is inverted when the load is increased from 4.6 to 10 N; for 4.6 N the mass loss decreased when the chromium percentage was increased from 2.66% to 5.01%. Nevertheless, for 10 N the mass loss increased when the chromium percentage was increased. The worn surfaces of the materials tested at 1 N show microcutting caused by the abrasive tip that produces continuous microchips. The worn surfaces and the abrasive paper tested at 10 N show continuous microchips and brittle debris. The results show that high pressures produce a brittle wear mechanism and low pressures produce a more ductile wear micromechanism, for this, the applied pressure defines the dependence between the wear resistance and wear micromechanism. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Load cells are used extensively in engineering fields. This paper describes a novel structural optimization method for single- and multi-axis load cell structures. First, we briefly explain the topology optimization method that uses the solid isotropic material with penalization (SIMP) method. Next, we clarify the mechanical requirements and design specifications of the single- and multi-axis load cell structures, which are formulated as an objective function. In the case of multi-axis load cell structures, a methodology based on singular value decomposition is used. The sensitivities of the objective function with respect to the design variables are then formulated. On the basis of these formulations, an optimization algorithm is constructed using finite element methods and the method of moving asymptotes (MMA). Finally, we examine the characteristics of the optimization formulations and the resultant optimal configurations. We confirm the usefulness of our proposed methodology for the optimization of single- and multi-axis load cell structures.
Resumo:
Background: The presence of the periodontal ligament (PDL) makes it possible to absorb and distribute loads produced during masticatory function and other tooth contacts into the alveolar process via the alveolar bone proper. However, several factors affect the integrity of periodontal structures causing the destruction of the connective matrix and cells, the loss of fibrous attachment, and the resorption of alveolar bone. Methods: The purpose of this study was to evaluate the stress distribution by finite element analysis in a PDL in three-dimensional models of the upper central incisor under three different load conditions: 100 N occlusal loading at 45 degrees (model 1: masticatory load); 500 N at the incisal edge at 45 degrees (model 2: parafunctional habit); and 800 N at the buccal surface at 90 degrees (model 3: trauma case). The models were built from computed tomography scans. Results: The stress distribution was quite different among the models. The most significant values (harmful) of tensile and compressive stresses were observed in models 2 and 3, with similarly distinct patterns of stress distributions along the PDL. Tensile stresses were observed along the internal and external aspects of the PDL, mostly at the cervical and middle thirds. Conclusions: The stress generation in these models may affect the integrity of periodontal structures. A better understanding of the biomechanical behavior of the PDL under physiologic and traumatic loading conditions might enhance the understanding of the biologic reaction of the PDL in health and disease. J Periodontol 2009;80:1859-1867.