900 resultados para bivariate GARCH-M
Resumo:
Internal risk management models of the kind popularized by J. P. Morgan are now used widely by the world’s most sophisticated financial institutions as a means of measuring risk. Using the returns on three of the most popular futures contracts on the London International Financial Futures Exchange, in this paper we investigate the possibility of using multivariate generalized autoregressive conditional heteroscedasticity (GARCH) models for the calculation of minimum capital risk requirements (MCRRs). We propose a method for the estimation of the value at risk of a portfolio based on a multivariate GARCH model. We find that the consideration of the correlation between the contracts can lead to more accurate, and therefore more appropriate, MCRRs compared with the values obtained from a univariate approach to the problem.
Resumo:
This paper considers the effect of GARCH errors on the tests proposed byPerron (1997) for a unit root in the presence of a structural break. We assessthe impact of degeneracy and integratedness of the conditional varianceindividually and find that, apart from in the limit, the testing procedure isinsensitive to the degree of degeneracy but does exhibit an increasingover-sizing as the process becomes more integrated. When we consider the GARCHspecifications that we are likely to encounter in empirical research, we findthat the Perron tests are reasonably robust to the presence of GARCH and donot suffer from severe over-or under-rejection of a correct null hypothesis.
Resumo:
It is widely accepted that some of the most accurate Value-at-Risk (VaR) estimates are based on an appropriately specified GARCH process. But when the forecast horizon is greater than the frequency of the GARCH model, such predictions have typically required time-consuming simulations of the aggregated returns distributions. This paper shows that fast, quasi-analytic GARCH VaR calculations can be based on new formulae for the first four moments of aggregated GARCH returns. Our extensive empirical study compares the Cornish–Fisher expansion with the Johnson SU distribution for fitting distributions to analytic moments of normal and Student t, symmetric and asymmetric (GJR) GARCH processes to returns data on different financial assets, for the purpose of deriving accurate GARCH VaR forecasts over multiple horizons and significance levels.
Resumo:
This paper reviews nine software packages with particular reference to their GARCH model estimation accuracy when judged against a respected benchmark. We consider the numerical consistency of GARCH and EGARCH estimation and forecasting. Our results have a number of implications for published research and future software development. Finally, we argue that the establishment of benchmarks for other standard non-linear models is long overdue.
Resumo:
This paper combines and generalizes a number of recent time series models of daily exchange rate series by using a SETAR model which also allows the variance equation of a GARCH specification for the error terms to be drawn from more than one regime. An application of the model to the French Franc/Deutschmark exchange rate demonstrates that out-of-sample forecasts for the exchange rate volatility are also improved when the restriction that the data it is drawn from a single regime is removed. This result highlights the importance of considering both types of regime shift (i.e. thresholds in variance as well as in mean) when analysing financial time series.
Resumo:
This paper considers the effect of using a GARCH filter on the properties of the BDS test statistic as well as a number of other issues relating to the application of the test. It is found that, for certain values of the user-adjustable parameters, the finite sample distribution of the test is far-removed from asymptotic normality. In particular, when data generated from some completely different model class are filtered through a GARCH model, the frequency of rejection of iid falls, often substantially. The implication of this result is that it might be inappropriate to use non-rejection of iid of the standardised residuals of a GARCH model as evidence that the GARCH model ‘fits’ the data.
A bivariate regression model for matched paired survival data: local influence and residual analysis
Resumo:
The use of bivariate distributions plays a fundamental role in survival and reliability studies. In this paper, we consider a location scale model for bivariate survival times based on the proposal of a copula to model the dependence of bivariate survival data. For the proposed model, we consider inferential procedures based on maximum likelihood. Gains in efficiency from bivariate models are also examined in the censored data setting. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the bivariate regression model for matched paired survival data. Sensitivity analysis methods such as local and total influence are presented and derived under three perturbation schemes. The martingale marginal and the deviance marginal residual measures are used to check the adequacy of the model. Furthermore, we propose a new measure which we call modified deviance component residual. The methodology in the paper is illustrated on a lifetime data set for kidney patients.
Resumo:
We analyze data obtained from a study designed to evaluate training effects on the performance of certain motor activities of Parkinson`s disease patients. Maximum likelihood methods were used to fit beta-binomial/Poisson regression models tailored to evaluate the effects of training on the numbers of attempted and successful specified manual movements in 1 min periods, controlling for disease stage and use of the preferred hand. We extend models previously considered by other authors in univariate settings to account for the repeated measures nature of the data. The results suggest that the expected number of attempts and successes increase with training, except for patients with advanced stages of the disease using the non-preferred hand. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
The objective of this article is to find out the influence of the parameters of the ARIMA-GARCH models in the prediction of artificial neural networks (ANN) of the feed forward type, trained with the Levenberg-Marquardt algorithm, through Monte Carlo simulations. The paper presents a study of the relationship between ANN performance and ARIMA-GARCH model parameters, i.e. the fact that depending on the stationarity and other parameters of the time series, the ANN structure should be selected differently. Neural networks have been widely used to predict time series and their capacity for dealing with non-linearities is a normally outstanding advantage. However, the values of the parameters of the models of generalized autoregressive conditional heteroscedasticity have an influence on ANN prediction performance. The combination of the values of the GARCH parameters with the ARIMA autoregressive terms also implies in ANN performance variation. Combining the parameters of the ARIMA-GARCH models and changing the ANN`s topologies, we used the Theil inequality coefficient to measure the prediction of the feed forward ANN.
Resumo:
Este estudo tem o objetivo de comparar várias técnicas que podem ser empregadas para proteger posições à vista usando mercados futuros. Partindo de uma posição na qual o investidor está à mercê do mercado, adota-se as técnicas mais simples de proteção até chegar a estimação da razão ótima de hedge ou de risco mínimo utilizando o modelo condicional, modelo no qual a variância é dependente do tempo. Para justificar a utilização da razão ótima de hedge dinâmica é introduzida a possibilidade de haver custo de transação. Os dados utilizados neste estudo são o preço à vista e preço de ajuste futuro do IBOVESPA do período 13/07/90 à 14/12/95.
Resumo:
o presente trabalho versa, fundamentalmente, sobre o entendimento da volatilidade, sua modelagem e estimação. Como objeto mais específico, tem-se a comparação de dois métodos de estimação da razão de hedge para uma carteira com dois ativos: dólar spot e dólar futuro. Usando dados para dois períodos - abril de 1995 a março de 2004 e janeiro de 1999 a 30 de março de 2004 -, a análise pelo método MGARCH-BEKK-Diagonal se mostrou superior ao MQO, no sentido de que, com o primeiro, conseguiu-se uma variação percentual negativa da variância da carteira em relação à carteira sem hedge - resultado oposto ao obtido, usando-se a outra abordagem. Sugere-se aqui que a explicação do sucesso de um modelo multivariado - extensão do modelo ARCH inicialmente proposto por Engle (1982) - deve-se a sua melhor adequação a um fato estilizado em Finanças: a concentração de volatilidade durante certos períodos, bem como ao uso de uma covariância em cuja estrutura se consideram seu caráter autoregressivo e o efeito de choques passados. A redução percentual da variância obtida indica ainda a importância do mercado futuro de dólar para a atividade de hedge e para a diminuição da incerteza.
Resumo:
Apresenta o método value at risk (VaR) para se mensurar o risco de mercado, sob diferentes abordagens. Analisa a série histórica do índice Bovespa no período de 1995 a 1996 por meio de testes econométricos de normalidade, autocorrelação dos retornos e raiz unitária. Comparo valor obtido a partir dos diferentes modelos de estimação de volatilidade propostos e verifica qual dos modelos foi o mais adequado para o caso estudado
Resumo:
O presente estudo demonstra que o mercado brasileiro cambial de forward reflete adequadamente a visão dos economistas – obtida junto a pesquisas de mercado realizadas periodicamente pelo Banco Central do Brasil – quando se modela o prêmio pelo risco cambial através de modelos auto-regressivos condicionais generalizados de heteroscedasticidade na Média (GARCH-M).