993 resultados para autonomous art
Resumo:
This paper describes automation of the digging cycle of a mining rope shovel which considers autonomous dipper (bucket) filling and determining methods to detect when to disengage the dipper from the bank. Novel techniques to overcome dipper stall and the online estimation of dipper "fullness" are described with in-field experimental results of laser DTM generation, machine automation and digging using a 1/7th scale model rope shovel presented. © 2006 Wiley Periodicals, Inc.
Resumo:
We present algorithms, systems, and experimental results for underwater data muling. In data muling a mobile agent interacts with static agents to upload, download, or transport data to a different physical location. We consider a system comprising an Autonomous Underwater Vehicle (AUV) and many static Underwater Sensor Nodes (USN) networked together optically and acoustically. The AUV can locate the static nodes using vision and hover above the static nodes for data upload. We describe the hardware and software architecture of this underwater system, as well as experimental data. © 2006 IEEE.
Resumo:
We describe a sensor network deployment method using autonomous flying robots. Such networks are suitable for tasks such as large-scale environmental monitoring or for command and control in emergency situations. We describe in detail the algorithms used for deployment and for measuring network connectivity and provide experimental data we collected from field trials. A particular focus is on determining gaps in connectivity of the deployed network and generating a plan for a second, repair, pass to complete the connectivity. This project is the result of a collaboration between three robotics labs (CSIRO, USC, and Dartmouth.).
Resumo:
To navigate successfully in a novel environment a robot needs to be able to Simultaneously Localize And Map (SLAM) its surroundings. The most successful solutions to this problem so far have involved probabilistic algorithms, but there has been much promising work involving systems based on the workings of part of the rodent brain known as the hippocampus. In this paper we present a biologically plausible system called RatSLAM that uses competitive attractor networks to carry out SLAM in a probabilistic manner. The system can effectively perform parameter self-calibration and SLAM in one dimension. Tests in two dimensional environments revealed the inability of the RatSLAM system to maintain multiple pose hypotheses in the face of ambiguous visual input. These results support recent rat experimentation that suggest current competitive attractor models are not a complete solution to the hippocampal modelling problem.
Resumo:
This paper considers the pros and cons of using Behavioural cloning for the development of low-level helicopter automation modules. Over the course of this project several Behavioural cloning approaches have been investigated. The results of the most effective Behavioural cloning approach are then compared to PID modules designed for the same aircraft. The comparison takes into consideration development time, reliability, and control performance. It has been found that Behavioural cloning techniques employing local approximators and a wide state-space coverage during training can produce stabilising control modules in less time than tuning PID controllers. However, performance and reliabity deficits have been found to exist with the Behavioural Cloning, attributable largely to the time variant nature of the dynamics due to the operating environment, and the pilot actions being poor for teaching. The final conclusion drawn here is that tuning PID modules remains superior to behavioural cloning for low-level helicopter automation.
Resumo:
Robust texture recognition in underwater image sequences for marine pest population control such as Crown-Of-Thorns Starfish (COTS) is a relatively unexplored area of research. Typically, humans count COTS by laboriously processing individual images taken during surveys. Being able to autonomously collect and process images of reef habitat and segment out the various marine biota holds the promise of allowing researchers to gain a greater understanding of the marine ecosystem and evaluate the impact of different environmental variables. This research applies and extends the use of Local Binary Patterns (LBP) as a method for texture-based identification of COTS from survey images. The performance and accuracy of the algorithms are evaluated on a image data set taken on the Great Barrier Reef.
Resumo:
In a recent decision by Mr Justice Laddie, a patent was held anticipated by, inter alia, prior use of a device which fell within the claims of the patent in suit, even though its circuitry was enclosed in resin. The anticipating invention had been "made available to the public" within the terms of section 2 (2) of the Patents Act 1977 because its essential integers would have been revealed by an interesting character, the "skilled forensic engineer".
Resumo:
This paper describes an autonomous navigation system for a large underground mining vehicle. The control architecture is based on a robust reactive wall-following behaviour. To make it purposeful we provide driving hints derived from an approximate nodal-map. For most of the time, the vehicle is driven with weak localization (odometry). This need only be improved at intersections where decisions must be made – a technique we refer to as opportunistic localization. The paper briefly reviews absolute and relative navigation strategies, and describes an implementation of a reactive navigation system on a 30 tonne Load-Haul-Dump truck. This truck has achieved full-speed autonomous operation at an artificial test mine, and subsequently, at a operational underground mine.
Resumo:
This paper investigates a mobile, wireless sensor/actuator network application for use in the cattle breeding industry. Our goal is to prevent fighting between bulls in on-farm breeding paddocks by autonomously applying appropriate stimuli when one bull approaches another bull. This is an important application because fighting between high-value animals such as bulls during breeding seasons causes significant financial loss to producers. Furthermore, there are significant challenges in this type of application because it requires dynamic animal state estimation, real-time actuation and efficient mobile wireless transmissions. We designed and implemented an animal state estimation algorithm based on a state-machine mechanism for each animal. Autonomous actuation is performed based on the estimated states of an animal relative to other animals. A simple, yet effective, wireless communication model has been proposed and implemented to achieve high delivery rates in mobile environments. We evaluated the performance of our design by both simulations and field experiments, which demonstrated the effectiveness of our autonomous animal control system.
Resumo:
This paper describes automation of the digging cycle of a mining rope shovel which considers autonomous dipper (bucket) filling and determining methods to detect when to disengage the dipper from the bank. Novel techniques to overcome dipper stall and the online estimation of dipper “fullness” are described with in-field experimental results of laser DTM generation, machine automation and digging using a 1/7th scale model rope shovel presented.
Resumo:
Performing reliable localisation and navigation within highly unstructured underwater coral reef environments is a difficult task at the best of times. Typical research and commercial underwater vehicles use expensive acoustic positioning and sonar systems which require significant external infrastructure to operate effectively. This paper is focused on the development of a robust vision-based motion estimation technique using low-cost sensors for performing real-time autonomous and untethered environmental monitoring tasks in the Great Barrier Reef without the use of acoustic positioning. The technique is experimentally shown to provide accurate odometry and terrain profile information suitable for input into the vehicle controller to perform a range of environmental monitoring tasks.
Resumo:
Performing reliable localisation and navigation within highly unstructured underwater coral reef environments is a difficult task at the best of times. Typical research and commercial underwater vehicles use expensive acoustic positioning and sonar systems which require significant external infrastructure to operate effectively. This paper is focused on the development of a robust vision-based motion estimation technique using low-cost sensors for performing real-time autonomous and untethered environmental monitoring tasks in the Great Barrier Reef without the use of acoustic positioning. The technique is experimentally shown to provide accurate odometry and terrain profile information suitable for input into the vehicle controller to perform a range of environmental monitoring tasks.
Resumo:
Virtual fencing has the potential to control grazing livestock. Understanding and refi ning the cues that can alter behaviour is an integral part of autonomous animal control. A series of tests have been completed to explore the relationship between temperament and control. Prior to exposure to virtual fencing control the animals were scored for temperament using fl ight speed and a sociability index using contact logging devices. The behavioural response of 30, Belmont Red steers were observed for behavioural changes when presented with cues prior to receiving an electrical stimulation. A control and four treatments designed to interrupt the animal’s movement down an alley were tested. The treatments consisted of sound plus electrical stimulation, vibration plus electrical stimulation, a visual cue plus electrical stimulation and electrical stimulation by itself. The treatments were randomly applied to each animal over fi ve consecutive trials. A control treatment in which no cues were applied was used to establish a basal behavioural pattern. A trial was considered completed after each animal had been retained behind the cue barrier for at least 60 sec. All cues and electrical stimulation were manually applied from a laptop located on a portable 3.5 m tower located immediately outside the alley. The electric stimulation consisted of 1.0 Kv of electricity. Electric stimulation, sound and vibration along with the Global Position System (GPS) hardware to autonomously record the animal’s path within the alley were recorded every second.
Resumo:
Maintenance is a time consuming and expensive task for any golf course or driving range manager. For a golf course the primary tasks are grass mowing and maintenance (fertilizer and herbicide spreading), while for a driving range mowing, maintenance and ball collection are required. All these tasks require an operator to drive a vehicle along paths which are generally predefined. This paper presents some preliminary in-field tsting results for an automated tractor vehicle performing golf ball collection on an actual driving range, and mowing on difficult unstructured terrain.