761 resultados para Virtual and Augmented Reality
Resumo:
Shadows and illumination play an important role when generating a realistic scene in computer graphics. Most of the Augmented Reality (AR) systems track markers placed in a real scene and retrieve their position and orientation to serve as a frame of reference for added computer generated content, thereby producing an augmented scene. Realistic depiction of augmented content with coherent visual cues is a desired goal in many AR applications. However, rendering an augmented scene with realistic illumination is a complex task. Many existent approaches rely on a non automated pre-processing phase to retrieve illumination parameters from the scene. Other techniques rely on specific markers that contain light probes to perform environment lighting estimation. This study aims at designing a method to create AR applications with coherent illumination and shadows, using a textured cuboid marker, that does not require a training phase to provide lighting information. Such marker may be easily found in common environments: most of product packaging satisfies such characteristics. Thus, we propose a way to estimate a directional light configuration using multiple texture tracking to render AR scenes in a realistic fashion. We also propose a novel feature descriptor that is used to perform multiple texture tracking. Our descriptor is an extension of the binary descriptor, named discrete descriptor, and outperforms current state-of-the-art methods in speed, while maintaining their accuracy.
Resumo:
The adoption of Augmented Reality (AR) technologies can make the provision of field services to industrial equipment more effective. In these situations, the cost of deploying skilled technicians in geographically dispersed locations must be accurately traded off with the risks of not respecting the service level agreements with the customers. This paper, through the case study of a leading OEM in the production printing industry, presents the challenges that have to be faced in order to favour the adoption of a particular kind of AR named Mobile Collaborative Augmented Reality (MCAR). In particular, this study uses both qualitative and quantitative research. Firstly, a demonstration to show how MCAR can support field service was settled in order to achieve information about the use experience of the people involved. Then, the entire field force of Océ Italia – Canon Group was surveyed in order to investigate quantitatively the technicians’ perceptions about the usefulness and ease of use of MCAR, as well as their intentions to use this technology.
Resumo:
International audience
Resumo:
Fully articulated hand tracking promises to enable fundamentally new interactions with virtual and augmented worlds, but the limited accuracy and efficiency of current systems has prevented widespread adoption. Today's dominant paradigm uses machine learning for initialization and recovery followed by iterative model-fitting optimization to achieve a detailed pose fit. We follow this paradigm, but make several changes to the model-fitting, namely using: (1) a more discriminative objective function; (2) a smooth-surface model that provides gradients for non-linear optimization; and (3) joint optimization over both the model pose and the correspondences between observed data points and the model surface. While each of these changes may actually increase the cost per fitting iteration, we find a compensating decrease in the number of iterations. Further, the wide basin of convergence means that fewer starting points are needed for successful model fitting. Our system runs in real-time on CPU only, which frees up the commonly over-burdened GPU for experience designers. The hand tracker is efficient enough to run on low-power devices such as tablets. We can track up to several meters from the camera to provide a large working volume for interaction, even using the noisy data from current-generation depth cameras. Quantitative assessments on standard datasets show that the new approach exceeds the state of the art in accuracy. Qualitative results take the form of live recordings of a range of interactive experiences enabled by this new approach.
Resumo:
BIM (Building Information Modelling) is an approach that involves applying and maintaining an integral digital representation of all building information for different phases of the project lifecycle. This paper presents an analysis of the current state of BIM in the industry and a re-assessment of its role and potential contribution in the near future, given the apparent slow rate of adoption by the industry. The paper analyses the readiness of the building industry with respect to the product, processes and people to present an argument on where the expectations from BIM and its adoption may have been misplaced. This paper reports on the findings from: (1) a critical review of latest BIM literature and commercial applications, and (2) workshops with focus groups on changing work-practice, role of technology, current perceptions and expectations of BIM.
Resumo:
The current paper compares and investigates the discrepancies in motivational drives of project team members with respect to their project environment in collocated and distributed (virtual) project teams. The set of factors, which in this context are called ‘Sense of Ownership’, is used as a scale to measure these discrepancies using one tailed t tests. These factors are abstracted from theories of motivation, team performance, and team effectiveness and are related to ‘Nature of Work’, ‘Rewards’, and ‘Communication’. It has been observed that ‘virtual ness’ does not seem to impact the motivational drives of the project team members or the way the project environments provide or support those motivational drives in collocated and distributed projects. At a more specific level in terms of the motivational drives of the project team (‘WANT’) and the ability of the project environment to provide or support those factors (‘GET’), in collocated project teams, significant discrepancies were observed with respect to financial and non financial rewards, learning opportunities, nature of work and project specific communication, while in distributed teams, significant discrepancies with respect to project centric communication, followed by financial rewards and nature of work. Further, distributed project environments seem to better support the team member motivation than collocated project environments. The study concludes that both the collocated and distributed project environments may not be adequately supporting the motivational drives of its project team members, which may be frustrating to them. However, members working in virtual team environments may be less frustrated than their collocated counterparts as virtual project environments are better aligned with the motivational drives of their team members vis-à-vis the collocated project environments.
Resumo:
The current paper compares and investigates the discrepancies in motivational drives of project team members with respect to their project environment in collocated and distributed (virtual) project teams. The set of factors, which in this context are called ‘Sense of Ownership’, is used as a scale to measure these discrepancies using one tailed t tests. These factors are abstracted from theories of motivation, team performance, and team effectiveness and are related to ‘Nature of Work’, ‘Rewards’, and ‘Communication’. It has been observed that ‘virtualness’ does not seem to impact the motivational drives of the project team members or the way the project environments provide or support those motivational drives in collocated and distributed projects. At a more specific level in terms of the motivational drives of the project team (‘WANT’) and the ability of the project environment to provide or support those factors (‘GET’), in collocated project teams, significant discrepancies were observed with respect to financial and non financial rewards, learning opportunities, nature of work and project specific communication, while in distributed teams, significant discrepancies with respect to project centric communication, followed by financial rewards and nature of work. Further, distributed project environments seem to better support the team member motivation than collocated project environments. The study concludes that both the collocated and distributed project environments may not be adequately supporting the motivational drives of its project team members, which may be frustrating to them. However, members working in virtual team environments may be less frustrated than their collocated counterparts as virtual project environments are better aligned with the motivational drives of their team members vis-à-vis the collocated project environments.
Resumo:
In this study, we explore motivation in collocated and virtual project teams. The literature on motivation in a project set.,ting reveals that motivation is closely linked to team performance. Based on this literature, we propose a set., of variables related to the three dimensions of ‘Nature of work’, ‘Rewards’, and ‘Communication’. Thirteen original variables in a sample size of 66 collocated and 66 virtual respondents are investigated using one tail t test and principal component analysis. We find that there are minimal differences between the two groups with respect to the above mentioned three dimensions. (p= .06; t=1.71). Further, a principal component analysis of the combined sample of collocated and virtual project environments reveals two factors- ‘Internal Motivating Factor’ related to work and work environment, and ‘External Motivating Factor’ related to the financial and non-financial rewards that explain 59.8% of the variance and comprehensively characterize motivation in collocated and virtual project environments. A ‘sense check’ of our interpretation of the results shows conformity with the theory and existing practice of project organization
Resumo:
AR process modelling movie presented at Gartner BPM Summit in Sydney, August, 2011. Video showing us using the MS Surface at QUT to perform collaborative process modelling.
Resumo:
AR process modelling movie presented at Gartner BPM Summit in Sydney, August, 2011.
Resumo:
Video presented as part of the USECA 2011 workshop at WISE 2011. Real-time sales assistant service is a problematic component of remote delivery of sales support for customers. Solutions involving web pages, telephony and video support prove problematic when seeking to remotely guide customers in their sales processes, especially with transactions revolving around physically complex artefacts. This process involves a number of services that are often complex in nature, ranging from physical compatibility and configuration factors, to availability and credit services. We propose the application of a combination of virtual worlds and augmented reality to create synthetic environments suitable for remote sales of physical artefacts, right in the home of the purchaser. A high level description of the service structure involved is shown, along with a use case involving the sale of electronic goods and services within an example augmented reality application. We expect this work to have application in many sales domains involving physical objects needing to be sold over the Internet.
Resumo:
This paper explores novel driving experiences that make use of gamification and augmented reality in the car. We discuss our design considerations, which are grounded in road safety psychology and video game design theory. We aim to address the tension between safe driving practices and player engagement. Specifically, we propose a holistic, iterative thinking process inspired by game design cognition and share our insights generated through the application of this process. We present preliminary game concepts that blend digital components with physical elements from the driving environment. We further highlight how this design process helped us to iteratively evolve these concepts towards being safer while maintaining fun. These insights and game design cognition itself will be useful to the AutomotiveUI community investigating similar novel driving experiences.
Resumo:
This paper explores novel driving experiences that make use of gamification and augmented reality in the car. We discuss our design considerations, which are grounded in road safety psychology and video game design theory. We aim to address the tension between safe driving practices and player engagement. Specifically, we propose a holistic, iterative thinking process inspired by game design cognition and share our insights generated through the application of this process. We present preliminary game concepts that blend digital components with physical elements from the driving environment. We further highlight how this design process helped us to iteratively evolve these concepts towards being safer while maintaining fun. These insights and game design cognition itself will be useful to the AutomotiveUI community investigating similar novel driving experiences.