935 resultados para Upper bound method
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
An exact solution to a family of parity check error-correcting codes is provided by mapping the problem onto a Husimi cactus. The solution obtained in the thermodynamic limit recovers the replica-symmetric theory results and provides a very good approximation to finite systems of moderate size. The probability propagation decoding algorithm emerges naturally from the analysis. A phase transition between decoding success and failure phases is found to coincide with an information-theoretic upper bound. The method is employed to compare Gallager and MN codes.
Resumo:
This thesis is concerned with the measurement of the characteristics of nonlinear systems by crosscorrelation, using pseudorandom input signals based on m sequences. The systems are characterised by Volterra series, and analytical expressions relating the rth order Volterra kernel to r-dimensional crosscorrelation measurements are derived. It is shown that the two-dimensional crosscorrelation measurements are related to the corresponding second order kernel values by a set of equations which may be structured into a number of independent subsets. The m sequence properties determine how the maximum order of the subsets for off-diagonal values is related to the upper bound of the arguments for nonzero kernel values. The upper bound of the arguments is used as a performance index, and the performance of antisymmetric pseudorandom binary, ternary and quinary signals is investigated. The performance indices obtained above are small in relation to the periods of the corresponding signals. To achieve higher performance with ternary signals, a method is proposed for combining the estimates of the second order kernel values so that the effects of some of the undesirable nonzero values in the fourth order autocorrelation function of the input signal are removed. The identification of the dynamics of two-input, single-output systems with multiplicative nonlinearity is investigated. It is shown that the characteristics of such a system may be determined by crosscorrelation experiments using phase-shifted versions of a common signal as inputs. The effects of nonlinearities on the estimates of system weighting functions obtained by crosscorrelation are also investigated. Results obtained by correlation testing of an industrial process are presented, and the differences between theoretical and experimental results discussed for this case;
Resumo:
Economic factors such as the rise in cost of raw materials, labour and power, are compelling manufacturers of cold-drawn polygonal sections, to seek new production routes which will enable the expansion in the varieties of metals used and the inclusion of difficult-to-draw materials. One such method generating considerable industrial interest is the drawing of polygonal sections from round at elevated temperature. The technique of drawing mild steel, medium carbon steel and boron steel wire into octagonal, hexagonal and square sections from round at up to 850 deg C and 50% reduction of area in one pass has been established. The main objective was to provide a basic understanding of the process, with particular emphasis being placed on modelling using both experimental and theoretical considerations. Elevated temperature stress-strain data was obtained using a modified torsion testing machine. Data were used in the upper bound solution derived and solved numerically to predict drawing stress strain, strain-rate, temperature and flow stress distribution in the deforming zone for a range of variables. The success of this warm working process will, of course, depend on the use of a satisfactory elevated temperature lubricant, an efficient cooling system, a suitable tool material having good wear and thermal shock resistance and an efficient die profile design which incorporates the principle of least work. The merits and demerits of die materials such as tungsten carbide, chromium carbide, Syalon and Stellite are discussed, principally from the standpoint of minimising drawing force and die wear. Generally, the experimental and theoretical results were in good agreement, the drawing stress could be predicted within close limits and the process proved to be technically feasible. Finite element analysis has been carried out on the various die geometries and die materials, to gain a greater understanding of the behaviour of these dies under the process of elevated temperature drawing, and to establish the temperature distribution and thermal distortion in the deforming zone, thus establishing the optimum die design and die material for the process. It is now possible to predict, for the materials already tested, (i) the optimum drawing temperature range, (ii) the maximum possible reduction of area per pass, (iii) the optimum drawing die profiles and die materials, (iv) the most efficient lubricant in terms of reducing the drawing force and die wear.
Resumo:
Since Shannon derived the seminal formula for the capacity of the additive linear white Gaussian noise channel, it has commonly been interpreted as the ultimate limit of error-free information transmission rate. However, the capacity above the corresponding linear channel limit can be achieved when noise is suppressed using nonlinear elements; that is, the regenerative function not available in linear systems. Regeneration is a fundamental concept that extends from biology to optical communications. All-optical regeneration of coherent signal has attracted particular attention. Surprisingly, the quantitative impact of regeneration on the Shannon capacity has remained unstudied. Here we propose a new method of designing regenerative transmission systems with capacity that is higher than the corresponding linear channel, and illustrate it by proposing application of the Fourier transform for efficient regeneration of multilevel multidimensional signals. The regenerative Shannon limit -the upper bound of regeneration efficiency -is derived. © 2014 Macmillan Publishers Limited. All rights reserved.
Resumo:
Consideration of the influence of test technique and data analysis method is important for data comparison and design purposes. The paper highlights the effects of replication interval, crack growth rate averaging and curve-fitting procedures on crack growth rate results for a Ni-base alloy. It is shown that an upper bound crack growth rate line is not appropriate for use in fatigue design, and that the derivative of a quadratic fit to the a vs N data looks promising. However, this type of averaging, or curve fitting, is not useful in developing an understanding of microstructure/crack tip interactions. For this purpose, simple replica-to-replica growth rate calculations are preferable. © 1988.
Resumo:
Les jeux de policiers et voleurs sont étudiés depuis une trentaine d’années en informatique et en mathématiques. Comme dans les jeux de poursuite en général, des poursuivants (les policiers) cherchent à capturer des évadés (les voleurs), cependant ici les joueurs agissent tour à tour et sont contraints de se déplacer sur une structure discrète. On suppose toujours que les joueurs connaissent les positions exactes de leurs opposants, autrement dit le jeu se déroule à information parfaite. La première définition d’un jeu de policiers-voleurs remonte à celle de Nowakowski et Winkler [39] et, indépendamment, Quilliot [46]. Cette première définition présente un jeu opposant un seul policier et un seul voleur avec des contraintes sur leurs vitesses de déplacement. Des extensions furent graduellement proposées telles que l’ajout de policiers et l’augmentation des vitesses de mouvement. En 2014, Bonato et MacGillivray [6] proposèrent une généralisation des jeux de policiers-voleurs pour permettre l’étude de ceux-ci dans leur globalité. Cependant, leur modèle ne couvre aucunement les jeux possédant des composantes stochastiques tels que ceux dans lesquels les voleurs peuvent bouger de manière aléatoire. Dans ce mémoire est donc présenté un nouveau modèle incluant des aspects stochastiques. En second lieu, on présente dans ce mémoire une application concrète de l’utilisation de ces jeux sous la forme d’une méthode de résolution d’un problème provenant de la théorie de la recherche. Alors que les jeux de policiers et voleurs utilisent l’hypothèse de l’information parfaite, les problèmes de recherches ne peuvent faire cette supposition. Il appert cependant que le jeu de policiers et voleurs peut être analysé comme une relaxation de contraintes d’un problème de recherche. Ce nouvel angle de vue est exploité pour la conception d’une borne supérieure sur la fonction objectif d’un problème de recherche pouvant être mise à contribution dans une méthode dite de branch and bound.
Resumo:
Maximum distance separable (MDS) convolutional codes are characterized through the property that the free distance meets the generalized Singleton bound. The existence of free MDS convolutional codes over Zpr was recently discovered in Oued and Sole (IEEE Trans Inf Theory 59(11):7305–7313, 2013) via the Hensel lift of a cyclic code. In this paper we further investigate this important class of convolutional codes over Zpr from a new perspective. We introduce the notions of p-standard form and r-optimal parameters to derive a novel upper bound of Singleton type on the free distance. Moreover, we present a constructive method for building general (non necessarily free) MDS convolutional codes over Zpr for any given set of parameters.
Resumo:
International audience
Resumo:
We construct a nonrelativistic wave equation for spinning particles in the noncommutative space (in a sense, a theta modification of the Pauli equation). To this end, we consider the nonrelativistic limit of the theta-modified Dirac equation. To complete the consideration, we present a pseudoclassical model (a la Berezin-Marinov) for the corresponding nonrelativistic particle in the noncommutative space. To justify the latter model, we demonstrate that its quantization leads to the theta-modified Pauli equation. We extract theta-modified interaction between a nonrelativistic spin and a magnetic field from such a Pauli equation and construct a theta modification of the Heisenberg model for two coupled spins placed in an external magnetic field. In the framework of such a model, we calculate the probability transition between two orthogonal Einstein-Podolsky-Rosen states for a pair of spins in an oscillatory magnetic field and show that some of such transitions, which are forbidden in the commutative space, are possible due to the space noncommutativity. This allows us to estimate an upper bound on the noncommutativity parameter.
Resumo:
We study the free-fall of a quantum particle in the context of noncommutative quantum mechanics (NCQM). Assuming noncommutativity of the canonical type between the coordinates of a two-dimensional configuration space, we consider a neutral particle trapped in a gravitational well and exactly solve the energy eigenvalue problem. By resorting to experimental data from the GRANIT experiment, in which the first energy levels of freely falling quantum ultracold neutrons were determined, we impose an upper-bound on the noncommutativity parameter. We also investigate the time of flight of a quantum particle moving in a uniform gravitational field in NCQM. This is related to the weak equivalence principle. As we consider stationary, energy eigenstates, i.e., delocalized states, the time of flight must be measured by a quantum clock, suitably coupled to the particle. By considering the clock as a small perturbation, we solve the (stationary) scattering problem associated and show that the time of flight is equal to the classical result, when the measurement is made far from the turning point. This result is interpreted as an extension of the equivalence principle to the realm of NCQM. (C) 2010 American Institute of Physics. [doi:10.1063/1.3466812]
Resumo:
Given a prime power q, define c (q) as the minimum cardinality of a subset H of F 3 q which satisfies the following property: every vector in this space di ff ers in at most 1 coordinate from a multiple of a vector in H. In this work, we introduce two extremal problems in combinatorial number theory aiming to discuss a known connection between the corresponding coverings and sum-free sets. Also, we provide several bounds on these maps which yield new classes of coverings, improving the previous upper bound on c (q)
Resumo:
We show that commutative group spherical codes in R(n), as introduced by D. Slepian, are directly related to flat tori and quotients of lattices. As consequence of this view, we derive new results on the geometry of these codes and an upper bound for their cardinality in terms of minimum distance and the maximum center density of lattices and general spherical packings in the half dimension of the code. This bound is tight in the sense it can be arbitrarily approached in any dimension. Examples of this approach and a comparison of this bound with Union and Rankin bounds for general spherical codes is also presented.
Resumo:
In many engineering applications, the time coordination of geographically separated events is of fundamental importance, as in digital telecommunications and integrated digital circuits. Mutually connected (MC) networks are very good candidates for some new types of application, such as wireless sensor networks. This paper presents a study on the behavior of MC networks of digital phase-locked loops (DPLLs). Analytical results are derived showing that, even for static networks without delays, different synchronous states may exist for the network. An upper bound for the number of such states is also presented. Numerical simulations are used to show the following results: (i) the synchronization precision in MC DPLLs networks; (ii) the existence of synchronous states for the network does not guarantee its achievement and (iii) different synchronous states may be achieved for different initial conditions. These results are important in the neural computation context. as in this case, each synchronous state may be associated to a different analog memory information. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper, the minimum-order stable recursive filter design problem is proposed and investigated. This problem is playing an important role in pipeline implementation sin signal processing. Here, the existence of a high-order stable recursive filter is proved theoretically, in which the upper bound for the highest order of stable filters is given. Then the minimum-order stable linear predictor is obtained via solving an optimization problem. In this paper, the popular genetic algorithm approach is adopted since it is a heuristic probabilistic optimization technique and has been widely used in engineering designs. Finally, an illustrative example is sued to show the effectiveness of the proposed algorithm.