Numerical enclosures of the optimal cost of the Kantorovitch’s mass transportation problem
Contribuinte(s) |
Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS) ; Université d'Angers (UA) |
---|---|
Data(s) |
2015
|
Resumo |
International audience <p>The problem of optimal transportation was formalized by the French mathematician Gaspard Monge in 1781. Since Kantorovitch, this (generalized) problem is formulated with measure theory. Based on Interval Arithmetic, we propose a guaranteed discretization of the Kantorovitch’s mass transportation problem. Our discretization is spatial: supports of the two mass densities are partitioned into finite families. The problem is relaxed to a finite dimensional linear programming problem whose optimum is a lower bound to the optimum of the initial one. Based on Kantorovitch duality and Interval Arithmetic, a method to obtain an upper bound to the optimum is also provided. Preliminary results show that good approximations are obtained.</p> |
Identificador |
hal-01392082 https://hal.archives-ouvertes.fr/hal-01392082 DOI : 10.1007/s10589-015-9794-9 OKINA : ua14291 |
Idioma(s) |
en |
Publicador |
HAL CCSD Springer Verlag |
Relação |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10589-015-9794-9 |
Fonte |
ISSN: 0926-6003 EISSN: 1573-2894 Computational Optimization and Applications https://hal.archives-ouvertes.fr/hal-01392082 Computational Optimization and Applications, Springer Verlag, 2015, pp.1-19. <http://link.springer.com/article/10.1007%2Fs10589-015-9794-9>. <10.1007/s10589-015-9794-9> http://link.springer.com/article/10.1007%2Fs10589-015-9794-9 |
Palavras-Chave | #Continuous programming #interval arithmetic #Optimal transportation #optimization #[SPI] Engineering Sciences [physics] |
Tipo |
info:eu-repo/semantics/article Journal articles |