956 resultados para Theorem of calculus


Relevância:

90.00% 90.00%

Publicador:

Resumo:

An invex constrained nonsmooth optimization problem is considered, in which the presence of an abstract constraint set is possibly allowed. Necessary and sufficient conditions of optimality are provided and weak and strong duality results established. Following Geoffrion's approach an invex nonsmooth alternative theorem of Gordan type is then derived. Subsequently, some applications on multiobjective programming are then pursued. © 2000 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Some problems of Calculus of Variations do not have solutions in the class of classic continuous and smooth arcs. This suggests the need of a relaxation or extension of the problem ensuring the existence of a solution in some enlarged class of arcs. This work aims at the development of an extension for a more general optimal control problem with nonlinear control dynamics in which the control function takes values in some closed, but not necessarily bounded, set. To achieve this goal, we exploit the approach of R.V. Gamkrelidze based on the generalized controls, but related to discontinuous arcs. This leads to the notion of generalized impulsive control. The proposed extension links various approaches on the issue of extension found in the literature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a family of networks whose local interconnection topologies are generated by the root vectors of a semi-simple complex Lie algebra. Cartan classification theorem of those algebras ensures those families of interconnection topologies to be exhaustive. The global arrangement of the network is defined in terms of integer or half-integer weight lattices. The mesh or torus topologies that network millions of processing cores, such as those in the IBM BlueGene series, are the simplest member of that category. The symmetries of the root systems of an algebra, manifested by their Weyl group, lends great convenience for the design and analysis of hardware architecture, algorithms and programs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In a previous paper, we connected the phenomenological noncommutative inflation of Alexander, Brandenberger and Magueijo [ Phys. Rev. D 67 081301 (2003)] and Koh and Brandenberger [ J. Cosmol. Astropart Phys. 2007 21 ()] with the formal representation theory of groups and algebras and analyzed minimal conditions that the deformed dispersion relation should satisfy in order to lead to a successful inflation. In that paper, we showed that elementary tools of algebra allow a group-like procedure in which even Hopf algebras (roughly the symmetries of noncommutative spaces) could lead to the equation of state of inflationary radiation. Nevertheless, in this paper, we show that there exists a conceptual problem with the kind of representation that leads to the fundamental equations of the model. The problem comes from an incompatibility between one of the minimal conditions for successful inflation (the momentum of individual photons being bounded from above) and the Fock-space structure of the representation which leads to the fundamental inflationary equations of state. We show that the Fock structure, although mathematically allowed, would lead to problems with the overall consistency of physics, like leading to a problematic scattering theory, for example. We suggest replacing the Fock space by one of two possible structures that we propose. One of them relates to the general theory of Hopf algebras (here explained at an elementary level) while the other is based on a representation theorem of von Neumann algebras (a generalization of the Clebsch-Gordan coefficients), a proposal already suggested by us to take into account interactions in the inflationary equation of state.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Suslin analytic sets characterize the sets of asymptotic values of entire holomorphic functions. By a theorem of Ahlfors, the set of asymptotic values is finite for a function with finite order of growth. Quasiregular maps are a natural generalization of holomorphic functions to dimensions n ≥ 3 and, in fact, many of the properties of holomorphic functions have counterparts for quasiregular maps. It is shown that analytic sets also characterize the sets of asymptotic values of quasiregular maps in Rn, even for those with finite order of growth. Our construction is based on Drasin's quasiregular sine function

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This is an account of some aspects of the geometry of Kahler affine metrics based on considering them as smooth metric measure spaces and applying the comparison geometry of Bakry-Emery Ricci tensors. Such techniques yield a version for Kahler affine metrics of Yau s Schwarz lemma for volume forms. By a theorem of Cheng and Yau, there is a canonical Kahler affine Einstein metric on a proper convex domain, and the Schwarz lemma gives a direct proof of its uniqueness up to homothety. The potential for this metric is a function canonically associated to the cone, characterized by the property that its level sets are hyperbolic affine spheres foliating the cone. It is shown that for an n -dimensional cone, a rescaling of the canonical potential is an n -normal barrier function in the sense of interior point methods for conic programming. It is explained also how to construct from the canonical potential Monge-Ampère metrics of both Riemannian and Lorentzian signatures, and a mean curvature zero conical Lagrangian submanifold of the flat para-Kahler space.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The stability of the functional equation f(x ○ y) = H(f(x), f(y)) (x, y ∈ S) is investigated, where H is a homogeneous function and ○ is a square-symmetric operation on the set S. The results presented include and generalize the classical theorem of Hyers obtained in 1941 on the stability of the Cauchy functional equation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this article is to describe certain results and conjectures concerning the structure of Galois cohomology groups and Selmer groups, especially for abelian varieties. These results are analogues of a classical theorem of Iwasawa. We formulate a very general version of the Weak Leopoldt Conjecture. One consequence of this conjecture is the nonexistence of proper Λ-submodules of finite index in a certain Galois cohomology group. Under certain hypotheses, one can prove the nonexistence of proper Λ-submodules of finite index in Selmer groups. An example shows that some hypotheses are needed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

If ξ is a countable ordinal and (fk) a sequence of real-valued functions we define the repeated averages of order ξ of (fk). By using a partition theorem of Nash-Williams for families of finite subsets of positive integers it is proved that if ξ is a countable ordinal then every sequence (fk) of real-valued functions has a subsequence (f'k) such that either every sequence of repeated averages of order ξ of (f'k) converges uniformly to zero or no sequence of repeated averages of order ξ of (f'k) converges uniformly to zero. By the aid of this result we obtain some results stronger than Mazur’s theorem.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The theorem of Czerniakiewicz and Makar-Limanov, that all the automorphisms of a free algebra of rank two are tame is proved here by showing that the group of these automorphisms is the free product of two groups (amalgamating their intersection), the group of all affine automorphisms and the group of all triangular automorphisms. The method consists in finding a bipolar structure. As a consequence every finite subgroup of automorphisms (in characteristic zero) is shown to be conjugate to a group of linear automorphisms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

∗Partially supported by Grant MM409/94 Of the Ministy of Science and Education, Bulgaria. ∗∗Partially supported by Grant MM442/94 of the Ministy of Science and Education, Bulgaria.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The neural-like growing networks used in the intelligent system of recognition of images are under consideration in this paper. All operations made over the image on a pre-design stage and also classification and storage of the information about the images and their further identification are made extremely by mechanisms of neural-like networks without usage of complex algorithms requiring considerable volumes of calculus. At the conforming hardware support the neural network methods allow considerably to increase the effectiveness of the solution of the given class of problems, saving a high accuracy of result and high level of response, both in a mode of training, and in a mode of identification.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To the two classical reversible 1-bit logic gates, i.e. the identity gate (a.k.a. the follower) and the NOT gate (a.k.a. the inverter), we add an extra gate, the square root of NOT. Similarly, we add to the 24 classical reversible 2-bit circuits, both the square root of NOT and the controlled square root of NOT. This leads to a new kind of calculus, situated between classical reversible computing and quantum computing.