Asymptotic values of quasiregular maps


Autoria(s): Canton Pire, Alicia
Data(s)

2013

Resumo

Suslin analytic sets characterize the sets of asymptotic values of entire holomorphic functions. By a theorem of Ahlfors, the set of asymptotic values is finite for a function with finite order of growth. Quasiregular maps are a natural generalization of holomorphic functions to dimensions n ≥ 3 and, in fact, many of the properties of holomorphic functions have counterparts for quasiregular maps. It is shown that analytic sets also characterize the sets of asymptotic values of quasiregular maps in Rn, even for those with finite order of growth. Our construction is based on Drasin's quasiregular sine function

Formato

application/pdf

Identificador

http://oa.upm.es/33311/

Idioma(s)

eng

Publicador

E.T.S.I. Navales (UPM)

Relação

http://oa.upm.es/33311/1/INVE_MEM_2013_180204.pdf

info:eu-repo/semantics/altIdentifier/doi/null

Direitos

http://creativecommons.org/licenses/by-nc-nd/3.0/es/

info:eu-repo/semantics/openAccess

Fonte

Resúmenes de Congreso de Jóvenes Investigadores | Congreso de Jóvenes Investigadores | 16/09/2013 - 20/09/2013 | Sevilla, Spain

Palavras-Chave #Matemáticas
Tipo

info:eu-repo/semantics/conferenceObject

Ponencia en Congreso o Jornada

PeerReviewed