974 resultados para Temperature field


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, torsion fracture behavior of drawn pearlitic steel wires with different heat treatments was investigated. Samples with different heat treatments was investigated. Samples with different heat treatment conditions were subjected to torsion and tensile tests. The shear strain along the torsion sample after fracture was measured. Fracture surface of wires was examined by Scanning Electron Microscopy. In addition, the method of Differential Scanning Calorimetry was used to characterize the thermodynamic process in the heat treatment. A numerical simulation via finite element method on temperature field evolution for the wire during heat treatment process was performed. The results show that both strain aging and recovery process occur in the material within the temperature range between room temperature and 435 degrees C. It was shown that the ductility measured by the number of twists drops at short heating times and recovers after further heating in the lead bath of 435 degrees C. On the other hand, the strenght of the wire increases at short heating times and decreases after further heating. The microstructure inhomogeneity due to short period of heat treatment, coupled with the gradient characteristics of shear deformation during torsion results in localized shear deformation of the wire. In this situation, shear cracks nucleate between lamella and the wire breaks with low number of twists.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

采用提拉法生长出φ30 mm×55 mm的ScAlMgO4晶体。在晶体生长过程中有轻微的挥发,粉末X射线衍射分析表明:挥发物质为MgO单相。运用扫描电镜、光学显微镜以及高分辨X射线衍射仪对晶体中的包裹物、开裂、生长条纹和小角晶界缺陷进行了研究。结果表明:温度梯度和热应力是形成晶体中缺陷的主要原因。通过合理设计温场,控制固-液界面的形状及冷却过程的降温速率,可以提高晶体的完整性。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Considering the interface absorption in optical coatings, we propose a model to simulate interface absorption. Calculations are made and the temperature field of several kinds of thin film multilayers, including those of partial reflectivity, high-reflectivity, and antireflectivity coatings are analyzed. The interface absorption is found to greatly influence the temperature distribution within multilayer coatings and to weaken the laser damage resistance of the samples. The real-time results of the photothermal deflection technique for laser induced damage to samples supports the model. (C) 1997 Society of Photo-Optical Instrumentation Engineers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To understand mechanisms underlying laser-induced damage of BK7 and fused silica, we calculate the temperature field of the substrates with CO2 laser irradiating at a given laser power and beam radius. We find that the two glasses show different thermal behaviors. A model is developed for estimating the time t to heat the surface of the substrates up to a particular temperature T with cw CO2 laser irradiation. We calculate theoretically the duration t that the samples are irradiated, from the beginning to visual catastrophic damage, with the assumption of damage threshold determined by the critical temperature. The duration t that the samples are irradiated, from the beginning to visual catastrophic damage, is investigated experimentally as well. Here we take the melting point or softening point as the critical temperature, given the thermomechanical coupling properties, which is enough to cause damage for BK7. Damage features are characterized by the sound of visual cracks. Finally, we calculate stresses induced by laser heating. The analysis of stress indicates that the damage of BK7 is due to the stresses induced by laser heating. (c) 2005 Society of Photo-Optical Instrumentation Engineers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To understand mechanisms underlying laser-induced damage of BK7 and fused silica, we calculate the temperature field of the substrates with CO2 laser irradiating at a given laser power and beam radius. We find that the two glasses show different thermal behaviors. A model is developed for estimating the time t to heat the surface of the substrates up to a particular temperature T with cw CO2 laser irradiation. We calculate theoretically the duration t that the samples are irradiated, from the beginning to visual catastrophic damage, with the assumption of damage threshold determined by the critical temperature. The duration t that the samples are irradiated, from the beginning to visual catastrophic damage, is investigated experimentally as well. Here we take the melting point or softening point as the critical temperature, given the thermomechanical coupling properties, which is enough to cause damage for BK7. Damage features are characterized by the sound of visual cracks. Finally, we calculate stresses induced by laser heating. The analysis of stress indicates that the damage of BK7 is due to the stresses induced by laser heating. (c) 2005 Society of Photo-Optical Instrumentation Engineers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two different kinds of 1064 nm high-reflective (HR) coatings, with and without SiO2 protective layer, were prepared by electron beam evaporation. Three-dimensional damage morphology, caused by a Nd:YAG pulsed laser, was investigated for these HR coatings. Development of laser-induced damage on HR coatings was revealed by both temperature field calculation and discrete meso-element simulation. Theoretical results met experimental very well. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste trabalho, utilizamos o formalismo de teorias quânticas de campos a temperatura finita, tal como desenvolvidas por Matsubara, aplicado a uma hamiltoniana de N campos escalares com autointeração quártica a N grande. Obtém-se uma expressão, na primeira aproximação quântica, para o coeficiente do termo quadrático da hamiltoniana ("massa quadrada"), renormalizado, como função da temperatura. A partir dela, estudamos o processo de quebra espontânea de simetria. Por outro lado, a mesma hamiltoniana é conhecida como modelo de Ginzburg-Landau na literatura de matéria condensada, e que permite o estudo de transições de fase em materiais ferromagnéticos. A temperatura é introduzida através do termo quadrático na hamiltoniana, de forma linear: é proporcional à diferença entre a variável de temperatura e a temperatura crítica. Tal modelo, porém, possui validade apenas na regi~ao de temperaturas próximas à criticalidade. Como resultado de nossos cálculos na teoria de campos a temperatura finita, observamos que, numa faixa de valores em torno da temperatura crítica, a massa quadrática pode ser aproximada por uma relação linear em relação à variável de temperatura. Isso evidencia a compatibilidade da abordagem de Ginzburg-Landau, na vizinhança da criticalidade, com respeito ao formalismo de campos a temperatura finita. Discutimos também os efeitos causados pela presença de um potencial químico no sistema.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High quality large grain high Tc superconducting ceramics offer enormous potential as 'permanent' magnets and in magnetic screening applications at 77K. This requires sample dimensions -cm with uniform high critical current densities of the order 105 A/cm2 in applied magnetic fields of IT. We report a study of the magnetic characterisation of a typical large YBa2Cu3O7-δ grain, prepared by seeded peritectic solidification, and correlate the magnetically determined critical current density, Jc, with microstuctural features from different regions of the bulk sample. From this data we extract the temperature, field and positional dependence of the critical current density of the samples and the irreversibility line. We find that whilst the bulk sample exhibits a good Jc of order 104 A/cm2 (77K, 1T), the local Jc is strongly correlated with the sample microstructure towards the edge of the sample and more severely at the centre of the sample by the presence of SmBa2Cu3O7-δ seed crystal. © 1997 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermal imaging technique relies on the usage of infrared signal to detect the temperature field. Using temperature as a flow tracer, thermography is used to investigate the scalar transport in the shallow-water wake generated by an emergent circular cylinder. Thermal imaging is demonstrated to be a good quantitative flow visualization technique for studying turbulent mixing phenomena in shallow waters. A key advantage of the thermal imaging method over other scalar measurement techniques, such as the Laser Induced Fluorescence (LIF) and Planar Concentration Analysis (PCA) methods, is that it involves a very simple experimental setup. The dispersion characteristics captured with this technique are found to be similar to past studies with traditional measurement techniques. © 2012 Publishing House for Journal of Hydrodynamics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A low power consumption 2 x 2 thermo-optic switch with fast response was fabricated on silicon-on-insulator by anisotropy chemical etching. Blocking trenches were etched on both sides of the phase-shifting arms to shorten device length and reduce power consumption. Thin top cladding layer was grown to reduce power consumption and switching time. The device showed good characteristics, including a low switching power of 145 mW and a fast switching speed of 8 +/- 1 mus, respectively. Two-dimensional finite element method was applied to simulate temperature field in the phase-shifting arm instead of conventional one-dimensional method. According to the simulated result, a new two-dimensional index distribution of phase-shifting arm was determined. Consequently finite-difference beam propagation method was employed to simulate the light propagation in the switch, and calculate the power consumption as well as the switching speed. The experimental results were in good agreement with the theoretical estimations. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied, for the first time, the strong coupling between exciton and cavity mode within semiconductor microcavity under hydrostatic pressure, and measured the Rabi splitting. The strong coupling between exciton and cavity mode, and so Rabi splitting appear clearly as the applied pressure reaches 0.37-0.41 GPa. The experiment result shows that hydrostatic pressure not only can tune the coupling between exciton and cavity mode effectively, but also can keep exciton property almost unchanged during the whole tuning procedure in contrast to other tuning method (temperature field et al). Our result agrees with the related theory very well. The Rabi splitting, extracted from fitting the measured mode-energy vs pressure curves with correspanding theoretical model, is equal to 6 meV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Accurate measurement of transit time for acoustic wave between two sensors installed on two sides of a furnace is a key to implementing the temperature field measurement technique based on acoustical method. A new method for measuring transit time of acoustic wave based on active acoustic source signal is proposed in this paper, which includes the followings: the time when the acoustic source signal arrives at the two sensors is measured first; then, the difference of two arriving time arguments is computed, thereby we get the transit time of the acoustic wave between two sensors installed on the two sides of the furnace. Avoiding the restriction on acoustic source signal and background noise, the new method can get the transit time of acoustic wave with higher precision and stronger ability of resisting noise interference.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have observed Wannier-Stark localization in strained In0.2Ga0.8As/GaAs superlattices by low- and room-temperature photocurrent spectra measurements. The experimental results are well in agreement with the theoretical predictions. A large field-induced modulation response of the absorption edge of the superlattices at room temperature suggests the possibilities of the application to the design of various kinds of electro-optical devices operating at a wavelength of 0.98 mum, based on Wannier-Stark localization effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For steady-state heat conduction a new variational functional for a unit cell of composites with periodic microstructures is constructed by considering the quasi-periodicity of the temperature field and in the periodicity of the heat flux fields. Then by combining with the eigenfunction expansion of complex potential which satisfies the fiber-matrix interface conditions, an eigenfunction expansion-variational method (EEVM) based on a unit cell is developed. The effective transverse thermal conductivities of doubly-periodic fiber reinforced composites are calculated, and the first-order approximation formula for the square and hexagonal arrays is presented,which is convenient for engineering application. The numerical results show a good convergency of the presented method, even through the fiber volume fraction is relatively high. Comparisons with the existing analytical and experimental results are made to demonstrate the accuracy and validity of the first-order approximation formula for the hexagonal array.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

温度场是影响激光焊接焊缝成形质量的关键因素. 针对非熔透型激光搭接焊接头焊缝成"钉头"状的特点,通过分析焊接时材料吸收激光能量的分布情况,提出了高斯面热源加线性递增式柱热源的复合体热源模型. 模型考虑板间接触热阻的影响,并将计算结果和试验结果进行了对比,发现模拟出的焊缝形状和试验吻合较好;此外基于本模型对焊缝各处的热循环与焊缝组织形貌及显微硬度的关系进行了分析. 结果表明,焊缝组织形貌及显微硬度除与加热和冷却速率有关外,峰值温度对其也有重要影响;在热循环基本一致的情况下焊缝的性能相似. 该模型较准确地模拟了薄板激光深熔焊接熔池温度场,对研究激光深熔焊接温度场问题和激光工艺参数的优化选择具有参考价值