919 resultados para Teaching of science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contains bibliographies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aims of this study were to investigate the beliefs concerning the philosophy of science held by practising science teachers and to relate those beliefs to their pupils' understanding of the philosophy of science. Three philosophies of science, differing in the way they relate experimental work to other parts of the scientific enterprise, are described. By the use of questionnaire techniques, teachers of four extreme types were identified. These are: the H type or hypothetico-deductivist teacher, who sees experiments as potential falsifiers of hypotheses or of logical deductions from them; the I type or inductivist teacher, who regards experiments mainly as a way of increasing the range of observations available for recording before patterns are noted and inductive generalisation is carried out; the V type or verificationist teacher, who expects experiments to provide proof and to demonstrate the truth or accuracy of scientific statements; and the 0 type, who has no discernible philosophical beliefs about the nature of science or its methodology. Following interviews of selected teachers to check their responses to the questionnaire and to determine their normal teaching methods, an experiment was organised in which parallel groups were given H, I and V type teaching in the normal school situation during most of one academic year. Using pre-test and post-test scores on a specially developed test of pupil understanding of the philosophy of science, it was shown that pupils were positively affected by their teacher's implied philosophy of science. There was also some indication that V type teaching improved marks obtained in school science examinations, but appeared to discourage the more able from continuing the study of science. Effects were also noted on vocabulary used by pupils to describe scientists and their activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of domestic Chinese undergraduate engineering course taught by international Australasian teaching staff. The project is a part of a teaching collaboration between Deakin University and Wuhan University of Science and Technology. The cohort of students from Wuhan was a freshman undergraduate engineering course in mechanical engineering. The particular subject was a freshman engineering-materials course taught in English. The course covered an introduction to material-science principles and practices. A survey was used for evaluating student perceptions. It is aimed that this study will help academics from Deakin University to better understand student experiences, and to identify the current challenges and barriers faced in student learning. Analysis of the survey has shown that 90% of students agreed that they were motivated to learn and achieve the learning goals through this collaborative program. Around 90% of students found that group-based practical activities were helpful in achieving learning goals. Overall, 90% of students strongly agreed they were satisfied with the method of teaching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper explores a collaborative self-study, autoethnography research project, which aided in informing practice for the teaching of reflective practice in Science, Technology, Engineering and Mathematics (STEM) at an Australian university. Self-report methods were used, because it enabled the collection of a variety of self-awareness data generated processes to help produce insights and understandings. This was achieved by undertaking a systematic approach to the exploration of a critical friendship between two academic support staff members alongside reflections from a recorded, focus group interview with nine STEM teachers. Four self-awareness data generated processes were used: (1) self-reflections; (2) collaborative reflections; (3) reflections on pertinent literature findings and (4) reflections from nine STEM teachers. A thematic analysis of the data was undertaken, which resulted in the discovery of three turning points such as moments of understandings that challenge assumptions and/or lead to new insights. The findings indicated that a STEM-centric, scaffolded approach that utilised the scientific method for reflective practice enabled the development of a shared understanding around teaching and assessing reflective practice for STEM teachers. First, because it boosted self-confidence and second, because it reduced scepticism around reflective practice as a non-scientific form of learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter reports on results of an international research project across Australia, Taiwan and Germany, titled: Exploring quality primary education in different cultures: A cross-national study of teaching and learning in primary science classrooms (EQUALPRIME).1 Its aim is to explore through video capture the practice of expert teachers of science in Taiwan, Germany and Australia. This chapter explores the pedagogical practices in two cases – fi rstly a Grade 4 Australian school with a specialist science teacher, Bob (pseudonym), and secondly, a mixed-age (Grade 4–6) German classroom being co-taught by a pair of teachers, Mr Arnold and Mrs Lennard. In both cases the students were studying the topic of force. The project is not determining what quality teaching is in any essentialised sense; this could be contentious in that quality practice might be considered to varywithin classrooms from the same country, let alone across countries and across cultures. Rather, given cases in which quality teaching is reported to be occurring, the project aims to describe these examples and identify features of quality science teaching practices as judged by peers in varied cultural settings. Data from these two cases in which quality teaching of science occurs, are used to address the research question: What can quality teaching and learning look like in a science classroom?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There exists a general consensus in the science education literature around the goal of enhancing students. and teachers. views of nature of science (NOS). An emerging area of research in science education explores NOS and argumentation, and the aim of this study was to explore the effectiveness of a science content course incorporating explicit NOS and argumentation instruction on preservice primary teachers. views of NOS. A constructivist perspective guided the study, and the research strategy employed was case study research. Five preservice primary teachers were selected for intensive investigation in the study, which incorporated explicit NOS and argumentation instruction, and utilised scientific and socioscientific contexts for argumentation to provide opportunities for participants to apply their NOS understandings to their arguments. Four primary sources of data were used to provide evidence for the interpretations, recommendations, and implications that emerged from the study. These data sources included questionnaires and surveys, interviews, audio- and video-taped class sessions, and written artefacts. Data analysis involved the formation of various assertions that informed the major findings of the study, and a variety of validity and ethical protocols were considered during the analysis to ensure the findings and interpretations emerging from the data were valid. Results indicated that the science content course was effective in enabling four of the five participants. views of NOS to be changed. All of the participants expressed predominantly limited views of the majority of the examined NOS aspects at the commencement of the study. Many positive changes were evident at the end of the study with four of the five participants expressing partially informed and/or informed views of the majority of the examined NOS aspects. A critical analysis of the effectiveness of the various course components designed to facilitate the development of participants‟ views of NOS in the study, led to the identification of three factors that mediated the development of participants‟ NOS views: (a) contextual factors (including context of argumentation, and mode of argumentation), (b) task-specific factors (including argumentation scaffolds, epistemological probes, and consideration of alternative data and explanations), and (c) personal factors (including perceived previous knowledge about NOS, appreciation of the importance and utility value of NOS, and durability and persistence of pre-existing beliefs). A consideration of the above factors informs recommendations for future studies that seek to incorporate explicit NOS and argumentation instruction as a context for learning about NOS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this Handbook is on Australasia (a region loosely recognized as that which includes Australia and New Zealand plus nearby Pacific nations such as Papua New Guinea, Solomon Islands, Fiji, Tonga, Vanuatu, and the Samoan islands) science education and the scholarship that most closely supports this program. The reviews of the research situate what has been accomplished within a given field in Australasian rather than international context. The purpose therefore is to articulate and exhibit regional networks and trends that produced specific forms of science education. The thrust lies in identifying the roots of research programs and sketching trajectories—focusing the changing façade of problems and solutions within regional contexts. The approach allows readers review what has been done and accomplished, what is missing, and what might be done next.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a number of years now it has been evident that the major issue facing science educators in the more developed countries of the world is the quantitative decline in enrolments in the senior secondary sciences, particularly the physical sciences, and in the number of higher achieving students applying for places in universities to undertake further studies in science. The deep malaise in school science to which these quantitative measures point has been elucidated by more qualitative studies of the students’ experience of studying science in secondary school in several of these countries (Sweden, Lindahl (2003); England, Simon and Osborne (2002); and Australia, Lyons (2005)). Remarkably concordant descriptions of these experiences can be summarized as: School science is: • transmission of knowledge from the teacher or the textbook to the students. • about content that is irrelevant and boring to our lives. • difficult to learn in comparison with other subjects Incidentally, the Australian study only involved consistently high achieving students; but even so, most of them found science more difficult than other more interesting subjects, and concluded that further science studies should be avoided unless they were needed for some career purpose. Other more representative confirmations of negative evaluations of the science curricula across Australia (and in particular states) are now available in Australia, from the large scale reviews of Goodrum, Hackling and Rennie (2001) and from the TIMSS (2002). The former reported that well under half of secondary students find the science at school relevant to my future, useful ion everyday life, deals with things I am concerned with and helps me make decisions about my health.. TIMSS found that 62 and 65 % of females and males in Year 4 agree with I like learning science, but by Year 8 only 26 and 33 % still agree. Students in Japan have been doubly notably because of (a) their high performance in international measures of science achievement like TIMSS and PISA and (b) their very low response to items in these studies which relate to interest in science. Ogura (2003) reported an intra-national study of students across Years 6-9 (upper primary through Junior High); interest in a range of their subjects (including science) that make up that country’s national curriculum. There was a steady decline in interest in all these subjects which might have indicated an adolescent reaction against schooling generally. However, this study went on to ask the students a further question that is very meaningful in the Japanese context, If you discount the importance of this subject for university entrance, is it worth studying? Science and mathematics remained in decline while all the other subjects were seen more positively. It is thus ironic, at a time when some innovations in curriculum and other research-based findings are suggesting ways that these failures of school science might be corrected, to find school science under a new demands that come from quite outside science education, and which certainly do not have the correction of this malaise as a priority. The positive curricular and research findings can be characterized as moves from within science education, whereas the new demands are moves that come from without science education. In this paper I set out these two rather contrary challenges to the teaching of science as it is currently practised, and go on to suggest a way forward that could fruitfully combine the two.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Student understanding of decimal number is poor (e.g., Baturo, 1998; Behr, Harel, Post & Lesh, 1992). This paper reports on a study which set out to determine the cognitive complexities inherent in decimal-number numeration and what teaching experiences need to be provided in order to facilitate an understanding of decimal-number numeration. The study gave rise to a theoretical model which incorporated three levels of knowledge. Interview tasks were developed from the model to probe 45 students’ understanding of these levels, and intervention episodes undertaken to help students construct the baseline knowledge of position and order (Level 1 knowledge) and an understanding of multiplicative structure (Level 3 knowledge). This paper describes the two interventions and reports on the results which suggest that helping students construct appropriate mental models is an efficient and effective teaching strategy.