982 resultados para THIN AL FILMS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis begins by studying the thickness of evaporative spin coated colloidal crystals and demonstrates the variation of the thickness as a function of suspension concentration and spin rate. Particularly, the films are thicker with higher suspension concentration and lower spin rate. This study also provides evidence for the reproducibility of spin coating in terms of the thickness of the resulting colloidal films. These colloidal films, as well as the ones obtained from various other methods such as convective assembly and dip coating, usually possess a crystalline structure. Due to the lack of a comprehensive method for characterization of order in colloidal structures, a procedure is developed for such a characterization in terms of local and longer range translational and orientational order. Translational measures turn out to be adequate for characterizing small deviations from perfect order, while orientational measures are more informative for polycrystalline and highly disordered crystals. Finally, to obtain an understanding of the relationship between dynamics and structure, the dynamics of colloids in a quasi-2D suspension as a function of packing fraction is studied. The tools that are used are mean square displacement (MSD) and the self part of the van Hove function. The slow down of dynamics is observed as the packing fraction increases, accompanied with the emergence of 6-fold symmetry within the system. The dynamics turns out to be non-Gaussian at early times and Gaussian at later times for packing fractions below 0.6. Above this packing fraction, the dynamics is non-Gaussian at all times. Also the diffusion coefficient is calculated from MSD and the van Hove function. It goes down as the packing fraction is increased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Al-C-N-O composite thin films have been synthesized by radio frequency reactive diode sputtering of an aluminum target in plasmas of N2+O2+CH4 gas mixtures. The chemical structure and composition of the films have been investigated by means of infrared and X-ray photoelectron spectroscopy. The results reveal the formation of C-N, Al-C, Al-N and Al-O bonds. The X-ray diffraction pattern suggests that the films are of nanometer composite material and contain predominately crystalline grains of hexagonal AlN and α-Al2O3. A good thermal stability of the composite has been confirmed by the annealing treatment at temperatures up to 600 °C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chalcopyrite Cu(In,Al)Se-2 (CIAS) thin films are grown on stainless steel substrate through one-step electrodeposition at room temperature. Indium is partially replaced with aluminum to increase the band gap of CuInSe2 without creating significant change in the original structure. The deposition potential is optimized at -0.8 V (vs. SCE) and annealing of the films is performed in vacuum to remove binary phases present in the as-deposited films. In/Al ratio is varied from 1/9 to 8/2, to find the suitability for solar cell fabrication. For In/Al ratio of less than 8/2, CuAlSe2 phase is formed in the film in addition to the CIAS phase. Depth profile X-ray photoelectron spectroscopy analysis of the CIAS sample prepared with In/Al ratio of 8/2 in the precursor solution confirmed the existence of single phase CIAS throughout the film. This film showed p-type conductivity while the rest of the samples with In/Al ratio less than 8/2 showed n-type conductivity. The band gap of the film varied from 1.06 to 1.45 eV, with variation in deposition potential. Structural, optical, morphological, compositional and electrical characterizations are carried out to establish the suitability of this film for solar cell fabrication. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Niobium pentoxide thin films have been deposited on silicon and platinum-coated silicon substrates by reactive magnetron sputtering. The as-deposited films were amorphous and showed good electrical properties in terms of a dielectric permittivity of about 30, and leakage current density of 10(-6) A cm(-2) al a field of 120 kV cm(-1). A rapid thermal annealing process at 800 degrees C further increased the dielectric constant to 90 and increased the leakage current density to 5 x 10(-6) A cm(-2). The current-voltage characteristics observed at low and high fields suggested a combination of phenomena at different regimes of applied electric field. The capacitance-voltage characteristics performed in the metal-insulator-semiconductor configuration indicated good electronic interfaces with a nominal trap density of 4.5 x 10(12) cm(-2) eV(-1), which is consistent with the behavior observed with conventional dielectrics such as SiO2 on silicon surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alumina (Al2O3) thin films were sputter deposited over well-cleaned glass and Si < 100 > substrates by DC reactive magnetron sputtering under various oxygen gas pressures and sputtering powers. The composition of the films was analyzed by X-ray photoelectron spectroscopy and an optimal O/Al atomic ratio of 1.59 was obtained at a reactive gas pressure of 0.03 Pa and sputtering power of 70 W. X-ray diffraction results revealed that the films were amorphous until 550 degrees C. The surface morphology of the films was studied using scanning electron microscopy and the as-deposited films were found to be smooth. The topography of the as-deposited and annealed films was analyzed by atomic force microscopy and a progressive increase in the rms roughness of the films from 3.2 nm to 4.53 nm was also observed with increase in the annealing temperature. Al-Al2O3-Al thin film capacitors were then fabricated on glass substrates to study the effect of temperature and frequency on the dielectric property of the films. Temperature coefficient of capacitance. AC conductivity and activation energy were determined and the results are discussed. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the mass transport behavior of infinitely extended, continuous, and very thin metallic films under the influence of electric current. Application of direct current of high densities (> 10(8) A/m(2)) results in visible melting of thin film at only one of the electrodes, and the melt then flows towards the other electrode in a circularly symmetric fashion forming a microscale ring pattern. For the two tested thin film systems, namely Cr and Al, of thicknesses ranging from 4 to 20 nm, the above directional flow consistently occurred from cathode to anode and anode to cathode, respectively. Furthermore, application of alternating electric current results in flow of the liquid material from both the electrodes. The dependence of critical flow behavior parameters, such as flow direction, flow velocity, and evolution of the ring diameter, are experimentally determined. Analytical models based on the principles of electromigration in liquid-phase materials are developed to explain the experimental observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Narrow bandwidth red electroluminescence from OLED devices fabricated using a simple solution-based approach is demonstrated. A spin-casting method is employed to fabricate organic light emitting diode (OLED) devices comprising a poly(N-vinylcarbazole) (PVK) host matrix doped with a europium beta-diketonate complex, Eu(dbM)(3)(Phen) (dibenzoylmethanate, dbm; 1,10-phenanthroline, Phen) on glass/ indium tin oxide (ITO)/3,4-polyethylene-dioxythiophene-polystyrene sulfonate (PEDOT) substrates. Saturated red europium ion emission, based on the (5)Do ->F-7(2) transition, is centered at a wavelength of 612 nm with a full width at half maximum of 3.5 rim. A maximum external quantum efficiency of 6.3 x 10(-2) cd/A (3.1 X 10(-2)%) and a maximum luminance of 130 cd/M-2 at 400 mA/cm(2) and 25 V is measured for ITO/PEDOT/PVK:Eu(dbM)3(Phen)/Ca/Al devices. This measured output luminance is comparable to that of devices fabricated using more sophisticated small molecule evaporation techniques. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the characterization of single-mode waveguides for 980 and 1550 nm wavelengths. High quality planar waveguide structure was fabricated from Y(1-x)Er(x)Al(3)(BO(3))(4) multilayer thin films with x = 0.02, 0.05, 0.1, 0.3, and 0.5, prepared through the polymeric precursor and sol-gel methods using spin-coating. The propagation losses of the planar waveguides varying from 0.63 to 0.88 dB/cm were measured at 632.8 and 1550 nm. The photoluminescence spectra and radiative lifetimes of the Er(3+) (4)I(13/2) energy level were measured in waveguiding geometry. For most samples the photoluminescence decay was single exponential with lifetimes in between 640 mu s and 200 mu s, depending on the erbium concentration and synthesis method. These results indicate that Er doped YAl(3)(BO(3))(4) compounds are promising for low loss waveguides. (C) 2009 Elsevier B.V. All fights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, different methods to estimate the value of thin film residual stresses using instrumented indentation data were analyzed. This study considered procedures proposed in the literature, as well as a modification on one of these methods and a new approach based on the effect of residual stress on the value of hardness calculated via the Oliver and Pharr method. The analysis of these methods was centered on an axisymmetric two-dimensional finite element model, which was developed to simulate instrumented indentation testing of thin ceramic films deposited onto hard steel substrates. Simulations were conducted varying the level of film residual stress, film strain hardening exponent, film yield strength, and film Poisson's ratio. Different ratios of maximum penetration depth h(max) over film thickness t were also considered, including h/t = 0.04, for which the contribution of the substrate in the mechanical response of the system is not significant. Residual stresses were then calculated following the procedures mentioned above and compared with the values used as input in the numerical simulations. In general, results indicate the difference that each method provides with respect to the input values depends on the conditions studied. The method by Suresh and Giannakopoulos consistently overestimated the values when stresses were compressive. The method provided by Wang et al. has shown less dependence on h/t than the others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se presentan las propiedades eléctricas del compuesto Cu3BiS3 depositado por co-evaporación. Este es un nuevo compuesto que puede tener propiedades adecuadas para ser utilizado como capa absorbente en celdas solares. Las muestras fueron caracterizadas a través de medidas de efecto Hall y fotovoltaje superficial transiente (SPV). A través de medidas de efecto Hall se encontró que la concentración de portadores de carga n es del orden de 1016 cm-3 independiente de la relación de masas de Cu/Bi. También se encontró que la movilidad de este compuesto (μ del orden de 4 cm2V -1s-1) varía de acuerdo con los mecanismos de transporte que la gobiernan en dependencia con la temperatura. A partir de las medidas de SPV se encontró alta densidad de defectos superficiales, defectos que son pasivados al superponer una capa buffer sobre el compuesto Cu3BiS3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin solid films were extensively used in the making of solar cells, cutting tools, magnetic recording devices, etc. As a result, the accurate measurement of mechanical properties of the thin films, such as hardness and elastic modulus, was required. The thickness of thin films normally varies from tens of nanometers to several micrometers. It is thus challenging to measure their mechanical properties. In this study, a nanoscratch method was proposed for hardness measurement. A three-dimensional finite element method (3-D FEM) model was developed to validate the nanoscratch method and to understand the substrate effect during nanoscratch. Nanoindentation was also used for comparison. The nanoscratch method was demonstrated to be valuable for measuring hardness of thin solid films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different amounts of Ru were implanted into thermally evaporated WO3 thin films by ion implantation. The films were subsequently annealed at 600oC for 2 hours in air to remove defects generated during the ion implantation. The Ru concentrations of four samples have been quantified by Rutherford Backscattering Spectrometry as 0.8, 5.5, 9 and 11.5 at%. The un-implanted WO3 films were highly porous but the porosity decreased significantly after ion implantation as observed by Transmission Electron Microscopy and Scanning Electron Microscopy. The thickness of the films also decreased with increasing Ru-ion dose, which is mainly due to densification of the porous films during ion implantation. From Raman spectroscopy two peaks at 408 and 451 cm-1 (in addition to the typical vibrational peaks of the monoclinic WO3 phase) associated with Ru were observed. Their intensity increased with increasing Ru concentration. X-Ray Photoelectron Spectroscopy showed a metallic state of Ru with binding energy of Ru 3d5/2 at 280.1 eV. This peak position remained almost unchanged with increasing Ru concentration. The resistances of the Ru-implanted films were found to increase in the presence of NO2 and NO with higher sensor response to NO2. The effect of Ru concentration on the sensing performance of the films was not explicitly observed due to reduced film thickness and porosity with increasing Ru concentration. However, the results indicate that the implantation of Ru into WO3 films with sufficient film porosity and film thickness can be beneficial for NO2 sensing at temperatures in the range of 250°C to 350°C.