687 resultados para Subharmonic bifurcation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work are studied periodic perturbations, depending on two parameters, of planar polynomial vector fields having an annulus of large amplitude periodic orbits, which accumulate on a symmetric infinite heteroclinic cycle. Such periodic orbits and the heteroclinic trajectory can be seen only by the global consideration of the polynomial vector fields on the whole plane, and not by their restriction to any compact set. The global study involving infinity is performed via the Poincare Compactification. It is shown that, for certain types of periodic perturbations, one can seek, in a neighborhood of the origin in the parameter plane, curves C-(m) of subharmonic bifurcations, for which the periodically perturbed system has subharmonics of order m, for any integer m.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the local codimension one and two bifurcations which occur in a family of three-dimensional vector fields depending on three parameters. An equivalent family, depending on five parameters, was recently proposed as a new chaotic system with a Lorenz-like butterfly shaped attractor and was studied mainly from a numerical point of view, for particular values of the parameters, for which computational evidences of the chaotic attractor was shown. In order to contribute to the understand of this new system we present an analytical study and the bifurcation diagrams of an equivalent three parameter system, showing the qualitative changes in the dynamics of its solutions, for different values of the parameters. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The aim of this study was to verify, in vivo and in vitro, the prevalence of root canal bifurcation in mandibular incisors by digital radiography. Material and Methods: Four hundred teeth were analyzed for the in vivo study. Digital radiographs were taken in an orthoradial direction from the mandibular incisor and canine regions. The digital radiographs of the canine region allowed visualizing the incisors in a distoradial direction using 20 degrees deviation. All individuals agreed to participate by signing an informed consent form. The in vitro study was conducted on 200 mandibular incisors positioned on a model, simulating the mandibular dental arch. Digital radiographs were taken from the mandibular incisors in both buccolingual and mesiodistal directions. Results: The digital radiography showed presence of bifurcation in 20% of teeth evaluated in vitro in the mesiodistal direction. In the buccolingual direction, 17.5% of teeth evaluated in vivo and 15% evaluated in vitro presented bifurcation or characteristics indicating bifurcation. Conclusions: Digital radiography associated with X-ray beam distally allowed detection of a larger number of cases of bifurcated root canals or characteristics of bifurcation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we studied a non-ideal system with two degrees of freedom consisting of a dumped nonlinear oscillator coupled to a rotatory part. We investigated the stability of the equilibrium point of the system and we obtain, in the critical case, sufficient conditions in order to obtain an appropriate Normal Form. From this, we get conditions for the appearance of Hopf Bifurcation when the difference between the driving torque and the resisting torque is small. It was necessary to use the Bezout Theorem, a classical result of Algebraic Geometry, in the obtaining of the foregoing results. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the qualitative differences in the phase transitions of the mono-mode Dicke model in its integrable and chaotic versions. These qualitative differences are shown to be connected to the degree of entanglement of the ground state correlations as measured by the linear entropy. We show that a first order phase transition occurs in the integrable case whereas a second order in the chaotic one. This difference is also reflected in the classical limit: for the integrable case the stable fixed point in phase space undergoes a Hopf type whereas the second one a pitchfork type bifurcation. The calculation of the atomic Wigner functions of the ground state follows the same trends. Moreover, strong correlations are evidenced by its negative parts. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

M. Manoel and I. Stewart 0101) classify Z(2) circle plus Z(2)-equivariant bifurcation problems up to codimension 3 and 1 modal parameter, using the classical techniques of singularity theory of Golubistky and Schaeffer [8]. In this paper we classify these same problems using an alternative form: the path formulation (Theorem 6.1). One of the advantages of this method is that the calculates to obtain the normal forms are easier. Furthermore, in our classification we observe the presence of only one modal parameter in the generic core. It differs from the classical classification where the core has 2 modal parameters. We finish this work comparing our classification to the one obtained in [10].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study codimension-one Hopf bifurcation from symmetric equilibrium points in reversible equivariant vector fields. Such bifurcations are characterized by a doubly degenerate pair of purely imaginary eigenvalues of the linearization of the vector field at the equilibrium point. The eigenvalue movements near such a degeneracy typically follow one of three scenarios: splitting (from two pairs of imaginary eigenvalues to a quadruplet on the complex plane), passing (on the imaginary axis), or crossing (a quadruplet crossing the imaginary axis). We give a complete description of the behaviour of reversible periodic orbits in the vicinity of such a bifurcation point. For non-reversible periodic solutions. in the case of Hopf bifurcation with crossing eigenvalues. we obtain a generalization of the equivariant Hopf Theorem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use singularity theory to classify forced symmetry-breaking bifurcation problemsf(z, lambda, mu) = f(1)(z, lambda) + muf(2)(z, lambda, mu) = 0,where f(1) is O(2)-equivariant and f(2) is D-n-equivariant with the orthogonal group actions on z is an element of R-2. Forced symmetry breaking occurs when the symmetry of the equation changes when parameters are varied. We explicitly apply our results to the branching of subharmonic solutions in a model periodic perturbation of an autonomous equation and sketch further applications.