Path formulation for Z(2) circle plus Z(2)-equivariant bifurcation problems


Autoria(s): Ferreira Costa, Joao Carlos; Sitta, Angela Maria; Brasselet, J. P.; Ruas, MAS
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/01/2007

Resumo

M. Manoel and I. Stewart 0101) classify Z(2) circle plus Z(2)-equivariant bifurcation problems up to codimension 3 and 1 modal parameter, using the classical techniques of singularity theory of Golubistky and Schaeffer [8]. In this paper we classify these same problems using an alternative form: the path formulation (Theorem 6.1). One of the advantages of this method is that the calculates to obtain the normal forms are easier. Furthermore, in our classification we observe the presence of only one modal parameter in the generic core. It differs from the classical classification where the core has 2 modal parameters. We finish this work comparing our classification to the one obtained in [10].

Formato

127-141

Identificador

http://dx.doi.org/10.1007/978-3-7643-7776-2_10

Real and Complex Singularities. Cambridge: Birkhauser Boston, p. 127-141, 2007.

http://hdl.handle.net/11449/32265

10.1007/978-3-7643-7776-2_10

WOS:000243343400010

Idioma(s)

eng

Publicador

Birkhauser Boston

Relação

Real and Complex Singularities

Direitos

closedAccess

Palavras-Chave #path formulation #equivariant bifurcation problems #Z(2) circle plus Z(2)-symmetry #classification
Tipo

info:eu-repo/semantics/conferencePaper