897 resultados para Strain-induced martensite


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A highly sensitive liquid level monitoring system based on microstructured polymer optical fiber Bragg grating (mPOFBG) array sensors is reported for the first time. The configuration is based on five mPOFBGs inscribed in the same fiber in the 850 nm spectral region, showing the potential to interrogate liquid level by measuring the strain induced in each mPOFBG embedded in a silicone rubber (SR) diaphragm, which deforms due to hydrostatic pressure variations. The sensor exhibits a highly linear response over the sensing range, a good repeatability, and a high resolution. The sensitivity of the sensor is found to be 98 pm/cm of water, enhanced by more than a factor of 9 when compared to an equivalent sensor based on a silica fiber around 1550 nm. The temperature sensitivity is studied and a multi-sensor arrangement proposed, which has the potential to provide level readings independent of temperature and the liquid density.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cryptococcus neoformans is an opportunistic fungal pathogen that causes significant disease worldwide. Even though this fungus has not evolved specifically to cause human disease, it has a remarkable ability to adapt to many different environments within its infected host. C. neoformans adapts by utilizing conserved eukaryotic and fungal-specific signaling pathways to sense and respond to stresses within the host. Upon infection, two of the most significant environmental changes this organism experiences are elevated temperature and high pH.

Conserved Rho and Ras family GTPases are central regulators of thermotolerance in C. neoformans. Many GTPases require prenylation to associate with cellular membranes and function properly. Using molecular genetic techniques, microscopy, and infection models, I demonstrated that the prenyltransferase, geranylgeranyl transferase I (GGTase I) is required for thermotolerance and pathogenesis. Using fluorescence microscopy, I found that only a subset of conserved GGTase I substrates requires this enzyme for membrane localization. Therefore, the C. neoformans GGTase I may recognize its substrate in a slightly different manner than other eukaryotic organisms.

The alkaline response transcription factor, Rim101, is a central regulator of stress-response genes important for adapting to the host environment. In particular, Rim101 regulates cell surface alterations involved in immune avoidance. In other fungi, Rim101 is activated by alkaline pH through a conserved signaling pathway, but this pathway had yet been characterized in C. neoformans. Using molecular genetic techniques, I identified and analyzed the conserved members of the Rim pathway. I found that it was only partially conserved in C. neoformans, missing the components that sense pH and initiate pathway activation. Using a genetic screen, I identified a novel Rim pathway component named Rra1. Structural prediction and genetic epistasis experiments suggest that Rra1 may serve as the Rim pathway pH sensor in C. neoformans and other related basidiomycete fungi.

To explore the relevance of Rim pathway signaling in the interaction of C neoformans with its host, I characterized the Rim101-regulated cell wall changes that prevent immune detection. Using HPLC, enzymatic degradation, and cell wall stains, I found that the rim101Δ mutation resulted in increased cell wall chitin exposure. In vitro co-culture assays demonstrated that increased chitin exposure is associated with enhanced activation of macrophages and dendritic cells. To further test this association, I demonstrated that other mutant strains with increased chitin exposure induce macrophage and dendritic cell responses similar to rim101Δ. We used primary macrophages from mutant mouse lines to demonstrate that members of both the Toll-like receptor and C-type lectin receptor families are involved in detecting strains with increased chitin exposure. Finally, in vivo immunological experiments demonstrated that the rim101Δ strain induced a global inflammatory immune response in infected mouse lungs, expanding upon our previous in vivo rim101Δ studies. These results demonstrate that cell wall organization largely determines how fungal cells are detected by the immune system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We studied the optical properties of a strain-induced direct-band-gap Ge quantum well embedded in InGaAs. We showed that the band offsets depend on the electronegativity of the layer in contact with Ge, leading to different types of optical transitions in the heterostructure. When group-V atoms compose the interfaces, only electrons are confined in Ge, whereas both carriers are confined when the interface consists of group-III atoms. The different carrier confinement results in different emission dynamics behavior. This study provides a solution to obtain efficient light emission from Ge.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Lesser Himalayan fold-thrust belt on the south flank of the Jajarkot klippe in west central Nepal was mapped in detail between the Main Central thrust in the north and the Main Boundary thrust in the south. South of the Jajarkot klippe, the fold-thrust belt involves sandstone, shale and carbonate rocks that are unmetamorphosed in the foreland and increase in metamorphic grade with higher structural position to sub-greenschist facies towards the hinterland. The exposed stratigraphy is correlative with the Proterozoic Ranimata, Sangram, Galyang, Syangia Formations and Lakharpata Group of Western Nepal and overlain by the Paleozoic Tansen and Kali Gandaki Groups. Based on field mapping and cross-section construction, three distinct thrust sheets were identified separated by top-to-the-south thrust faults. From the foreland (south) to the hinterland (north), the first thrust sheet in the immediate hanging wall of the Main Boundary thrust defines an open syncline. The second thrust sheet contains a very broad synformal duplex, which is structurally stacked against the third thrust sheet containing a homoclinal panel of the oldest exposed Proterozoic stratigraphy. Outcrop scale folds throughout the study area are predominantly south vergent, open, and asymmetric reflecting the larger regional scale folding style, which corroborate the top-to-the-south deformation style seen in the faults of the region. Field techniques were complemented with microstructural and quartz crystallographic c-axis preferred orientation analyses using a petrographic microscope and a fabric analyzer, respectively. Microstructural analysis identified abundant strain-induced recrystallization textures and occasional occurrences of top-to-the-south shear-sense indicators primarily in the hinterland rocks in the immediate footwall of the Main Central Thrust. Top-to-the-south shearing is also supported by quartz crystallographic c-axis preferred orientations. Quartz recrystallization textures indicate an increase in deformation temperature towards the Main Central thrust. A line balance estimate indicates that approximately 15 km of crustal shortening was accommodated by folding and faulting in the fold-thrust belt south of the Jajarkot klippe. Additionally, estimations of shortening velocity suggest that the shortening velocity operating in this section of the fold-thrust belt between 23 to 14 Ma was slower than what is currently observed as a result of the ongoing deformation of the Sub-Himalayan fold-thrust belt.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese de doutoramento em Farmácia (Toxicologia), apresentada à Faculdade de Farmácia da Universidade de Lisboa, 2009.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tissue mechanics and cellular interactions influence every single cell in our bodies to drive morphogenesis. However, little is known about mechanisms by which cells sense physical forces and transduce them from the cytoskeleton to the nucleus to control gene expression and stem cell fate. We have identified a novel nuclear-mechanosensor complex, consisting of the nuclear membrane protein emerin (Emd), actin and non-muscle myosin IIA (NMIIA), that regulates transcription, chromatin remodeling and lineage commitment. Force-induced enrichment of Emd at the outer nuclear membrane leads to a compensation between H3K9me2,3 and H3K27me3 on constitutive heterochromatin. This strain-induced epigenetic switch is accompanied by the global rearrangement of chromatin. In parallel, forces promote local F-actin polymerization at the outer nuclear membrane, which limits the availability of nuclear G-actin. Subsequently, the reduction of nuclear G-actin results in attenuated global transcription and therefore increased H3K27me3 occupancy to reinforce gene silencing. Restoring nuclear actin levels in the presence of mechanical strain counteracts PRC2-mediated silencing of transcribed genes. This mechanosensory circuit is also observed in vivo. Depletion of NMIIA in mouse epidermis leads to decreased H3K27me3 levels and precocious lineage commitment, thus abrogating organ growth and patterning. Our results reveal how mechanical signals regulate nuclear architecture, chromatin organization and transcription to control cell fate decisions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the possibility of inoculation and reinoculation with a trypanosomatid isolated from bats that is morphologically, biologically and molecularly similar to Trypanosoma cruzi, to protect against infection by virulent strains. Non-isogenic mice were divided into 24 groups that received from zero to three inoculations of Trypanosoma cruzi-like strain RM1, in the presence or absence of Freund's adjuvant, and were challenged with the VIC or JG strains of Trypanosoma cruzi. Parasitemia and survival were monitored and animals were sacrificed for histopathological analysis. Animals immunized with Trypanosoma cruzi-like strain RM1 presented decreased parasitemia, independently of the number of inoculations or the presence of adjuvant. In spite of this reduction, these animals did not present any protection against histopathological lesions. Severe eosinophilic infiltrate was observed and was correlated with the number of inoculations of Trypanosoma cruzi-like strain RM1. These findings suggest that prior inoculation with this strain did not protect against infection but, rather, aggravated the tissue inflammatory process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reactivation of chronic chagasic patients may occur upon use of immunosuppressive drugs related to kidney or heart transplantation or when they are affected by concomitant HIV infection. This recrudescence, however, does not occur in all chagasic patients exposed to immunosuppressive agents. We therefore investigated the influence of Trypanosoma cruzi strains in the recrudescence of the parasitism in mice at the chronic phase treated with cyclophosphamide, an immunosuppressor that blocks lymphocytes DNA synthesis and therefore controls B cells response. A large variation was detected in the percentages of newly established acute phases in the groups of mice inoculated with the different strains. We suggest that reactivation of chronic T. cruzi infections is influenced by the parasite intrinsic characteristics, a phenomenon that might occur in the human disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plants of Senna occidentalis (sin. Cassia occidentalis) with mosaic symptoms were collected near a soybean (Glycine max) field where some plants exhibited symptoms of mosaic and blistering. A preliminary examination of leaf tissue from diseased S. occidentalis by electron microscopy revealed the presence of pinwheel inclusions as well as long flexuous particles, indicating the presence of a potyvirus. Host range, serology, and amino acid sequence from this potyvirus were similar to those from other Brazilian isolates of Soybean mosaic virus (SMV). The 3'- terminal region of the genomic RNA was cloned and a cDNA sequence of 1.9 kb upstream of the poly (A) tract was determined. The sequence contains a single open reading frame and a 3'- non-translated region (NTR) of 259 bp. The nucleotide sequence of the CP gene of SMV-Soc was 98% identical to that of Brazilian isolates SMV-B, SMV-L, and SMV-FT10. The percentage of nucleotide identity of their 3'-NTR's was 91, 98, and 99% in relation to SMV-L, SMV-B, and SMV-FT10, respectively. In contrast to other Brazilian SMV isolates studied, SMV-Soc was able to infect sunflower (Helianthus annuus). Based on these results, the S. occidentalis isolate was identified as a new strain of SMV belonging to the SMV strain, group G5 and was named SMV-Soc. This is the first report of naturaly occurring SMV infecting plants of S. occidentalis in Brazil, adding this weed as a new source of SMV in the field.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The 1.7 angstrom resolution crystal structure of recombinant family G/11 beta-1,4-xylanase (rXynA) from Bacillus subtilis 1A1 shows a jellyroll fold in which two curved P-sheets form the active-site and substrate-binding cleft. The onset of thermal denaturation of rXynA occurs at 328 K, in excellent agreement with the optimum catalytic temperature. Molecular dynamics simulations at temperatures of 298-328 K demonstrate that below the optimum temperature the thumb loop and palm domain adopt a closed conformation. However, at 328 K these two domains separate facilitating substrate access to the active-site pocket, thereby accounting for the optimum catalytic temperature of the rXynA. (c) 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: The aim of this study was to investigate the level of microstrain that is exerted during polymerization of acrylic resins used for splinting during implant impressions. Material and Methods: Two acrylic resins (GC Pattern Resin, Duralay II) and square transfer coping splinting methods were evaluated by means of strain gauge analysis. Two implants were embedded in a polyurethane block, and the abutments were positioned. Sixty specimens were prepared using two square transfer Copings that were rigidly connected to each other using the acrylic resins. The specimens were randomly divided into three groups of 20 each for the splinting methods: Method 1 was a one-piece method; in method 2, the splint was separated and reconnected after 17 minutes; and in method 3, the splint was separated and reconnected after 24 hours. In each group, half the specimens were splinted with GC Pattern Resin and the other half were splinted with Duralay II. Three microstrain measurements were performed by four strain gauges placed on the upper surface of the polyurethane blocks at 5 hours after resin polymerization for all groups. The data were analyzed statistically. Results: Both resin type and splinting method significantly affected microstrain. interaction terms were also significant. Method 1 in combination with Duralay II produced significantly higher microstrain (1,962.1 mu epsilon) than the other methods with this material (method 2: 241.1 mu epsilon; method 3: 181.5 mu epsilon). No significant difference was found between splinting methods in combination with GC Pattern Resin (method 1: 173.8 mu epsilon; method 2: 112.6 mu epsilon; method 3: 105.4 mu epsilon). Conclusions: Because of the high microstrain generated, Duralay II should not be used for one-piece acrylic resin splinting, and separation and reconnection are suggested. For GC Pattern Resin, variations in splinting methods did not significantly affect the microstrain created. Int J Oral Maxillofac Implants 2012;27:341-345

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mechanism by which protective immunity to Plasmodium is lost in the absence of continued exposure to this parasite has yet to be fully elucidated. It has been recently shown that IFN-γ produced during human and murine acute malaria primes the immune response to TLR agonists. In this study, we investigated whether IFN-γ-induced priming is important to maintain long-term protective immunity against Plasmodium chabaudi AS malaria. On day 60 postinfection, C57BL/6 mice still had chronic parasitemia and efficiently controlled homologous and heterologous (AJ strain) challenge. The spleens of chronic mice showed augmented numbers of effector/effector memory (TEM) CD4(+) cells, which is associated with increased levels of IFN-γ-induced priming (i.e., high expression of IFN-inducible genes and TLR hyperresponsiveness). After parasite elimination, IFN-γ-induced priming was no longer detected and protective immunity to heterologous challenge was mostly lost with >70% mortality. Spontaneously cured mice had high serum levels of parasite-specific IgG, but effector T/TEM cell numbers, parasite-driven CD4(+) T cell proliferation, and IFN-γ production were similar to noninfected controls. Remarkably, the priming of cured mice with low doses of IFN-γ rescued TLR hyperresponsiveness and the capacity to control heterologous challenge, increasing the TEM cell population and restoring the CD4(+) T cell responses to parasites. Contribution of TLR signaling to the CD4(+) T cell responses in chronic mice was supported by data obtained in mice lacking the MyD88 adaptor. These results indicate that IFN-γ-induced priming is required to maintain protective immunity against P. chabaudi and aid in establishing the molecular basis of strain-transcending immunity in human malaria.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The elastic strain/stress fields (halo) around a compressed amorphous nano-track (core) caused by a single high-energy ion impact on LiNbO3 are calculated. A method is developed to approximately account for the effects of crystal anisotropy of LiNbO3 (symmetry 3m) on the stress fields for tracks oriented along the crystal axes (X, Y or Z). It only considers the zero-order (axial) harmonic contribution to the displacement field in the perpendicular plane and uses effective Poisson moduli for each particular orientation. The anisotropy is relatively small; however, it accounts for some differential features obtained for irradiations along the crystallographic axes X, Y and Z. In particular, the irradiation-induced disorder (including halo) and the associated surface swelling appear to be higher for irradiations along the X- or Y-axis in comparison with those along the Z-axis. Other irradiation effects can be explained by the model, e.g. fracture patterns or the morphology of pores after chemical etching of tracks. Moreover, it offers interesting predictions on the effect of irradiation on lattice parameters