990 resultados para Shiga toxin producing E. coli (STEC)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rangel P. & Marin J.M. 2009. Analysis of Escherichia coli isolated from bovine mastitic milk. Pesquisa Veterinaria Brasileira 29(5): 363-368. Departamento de Morfologia, Estomatologia e Fisiologia, Faculdade de Odontologia de Ribeirao Preto, Universidade de São Paulo, Avenida do Cafe s/n, Campus USP, Ribeirao Preto, SP 14040-904, Brazil. E-mail: jmmarin@forp.usp.brMastitis has been recognized for some time as the most costly disease in dairy herds. From February to November 2004, 670 samples of bovine mastitic milk from which 231 Escherichia coli strains were isolated, were collected from two Brazilian states. The strains were screened for the presence of Shiga toxin-producing (stx 1 and stx 2) and intimin (eae) genes. Twenty (8.6%) strains were detected by PCR to harbor the Shiga toxin genes (8 the stx 1 gene, 12 the stx 2 gene and none both of them). Two (0.8%) of the Escherichia coli strains studied were eae positive non Shiga toxin-producing. The strains were also examined for resistance to 12 antimicrobial agents. The predominantly observed resistance was to tetracycline (92.2%), streptomycin (90.4%), nalidixic acid (88.3%), amikacin (86.5%) and cephalothin (84.8%). Multidrug resistance was found among 152 isolates (65.8%).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Escherichia coli O157:H7 is a food-borne pathogen causing hemorrhagic colitis and hemolytic-uremic syndrome, especially in children. The main virulence factor responsible for the more serious disease is the Shiga toxin 2 (Stx2), which is released in the gut after oral ingestion of the organism. Although it is accepted that the amount of Stx2 produced by E. coli O157:H7 in the gut is critical for the development of disease, the eukaryotic or prokaryotic gut factors that modulate Stx2 synthesis are largely unknown. In this study, we examined the influence of prokaryotic molecules released by a complex human microbiota on Stx2 synthesis by E. coli O157:H7. Stx2 synthesis was assessed after growth of E. coli O157:H7 in cecal contents of gnotobiotic rats colonized with human microbiota or in conditioned medium having supported the growth of complex human microbiota. Extracellular prokaryotic molecules produced by the commensal microbiota repress stx(2) mRNA expression and Stx2 production by inhibiting the spontaneous and induced lytic cycle mediated by RecA. These molecules, with a molecular mass of below 3 kDa, are produced in part by Bacteroides thetaiotaomicron, a predominant species of the normal human intestinal microbiota. The microbiota-induced stx(2) repression is independent of the known quorum-sensing pathways described in E. coli O157:H7 involving SdiA, QseA, QseC, or autoinducer 3. Our findings demonstrate for the first time the regulatory activity of a soluble factor produced by the complex human digestive microbiota on a bacterial virulence factor in a physiologically relevant context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated host-related factors that influence intestinal colonization by Shiga-toxigenic E. coli (STEC). A quantitative colonization assay was developed to comparatively measure attachment of STEC to bovine colonic tissues maintained in vitro. No differences were determined in colonization susceptibility between tissues derived from weaning calves and adult cattle, or for tissues from cattle fed grain and forage-based rations. Substrate conditions designed to represent various intra-enteric environments were tested for their effect on STEC/mucosal interaction. Under conditions corresponding to a well-fed ruminant (high volatile fatty acid and lactate concentrations, low pH), significantly less STEC colonized the mucosal surface of colonic biopsies. These results may help explain why fasted. poorly or intermittently fed cattle and pre-ruminant calves excrete STEC to a greater degree. Studies on the ecology of STEC within the ruminant gut help identify mechanisms to reduce their threat to public health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the pathogenesis of hemolytic uremic syndrome (HUS), a severe sequela of Shiga toxin (Stx)-producing Escherichia coli (STEC) gastrointestinal infections, before the toxin acts on the target endothelial cells of the kidney and brain, several Stx forms are transported in the bloodstream: free Stx; Stx bound to circulating cells through Gb3Cer and TLR4 receptors; and Stx associated to blood cell-derived microvesicles. The latter form is mainly responsible for the development of life-threatening HUS in 15% of STEC-infected patients. Stx consist of five B subunits non-covalently bound to a single A subunit (uncleaved Stx) which can be cleaved in two fragments (A1 and A2) held by a disulfide bond (cleaved Stx). After reduction, the enzymatically active A1 fragment responsible for toxicity is released. Cleaved and uncleaved Stx are biologically active but functionally different, thus their presence in patients’ blood could affect the onset of HUS. Currently, there are no effective therapies for the treatment of STEC-infected patients and the gold standard strategies available for the diagnosis are very expensive and time-consuming. In this thesis, by exploiting the resolving power of SERS technology (Amplified Raman Spectroscopy on Surfaces), a plasmonic biosensor was developed as effective diagnostic tool for early detection of Stx in patients’ sera. An acellular protein synthesis system for detecting cleaved Stx2a in human serum based on its greater translation inhibition after treatment with reducing agents was developed and used to identify cleaved Stx in STEC-infected patients’ sera. Pathogenic microvesicles from Stx2a-challenged blood from healthy donors were isolated and characterized. The antibiotic NAB815, acting as inhibitor of toxin binding to TLR4 expressed by circulating cells, was found to be effective in impairing the formation of blood cell-derived microvesicles containing Stx2a, also having a protective effect in cellular models. This approach could be proposed as an innovative treatment for HUS prevention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Hemolytic-uremic syndrome (HUS) is a multisystem disorder associated with significant morbidity and mortality. Typically, HUS is preceded by an episode of (bloody) diarrhea mostly due to Shiga-toxin (Stx) producing Escherichia coli (STEC). The main reservoir for STEC is the intestine of healthy ruminants, mostly cattle, and recent studies have revealed an association between indicators of livestock density and human STEC infection or HUS, respectively. Nationwide data on HUS in Switzerland have been established through the Swiss Pediatric Surveillance Unit (SPSU) [Schifferli et al. Eur J Pediatr. 2010; 169:591-8]. Aims: Analysis of age-specific incidence rate of childhood HUS and possible association of Shiga-toxin associated HUS (Stx-HUS) with indicators of livestock farming intensity. Methods: Epidemiological and ecological analysis based on the SPSU data (1997-2003) and the database of the Swiss Federal Statistical Office (data on population and agriculture). Results: One hundred-fourteen cases were registered, 88% were ≤5 years old. The overall annual incidence rate was 1.42 (0.60-1.91) and 4.23 (1.76-6.19) per 100000 children ≤5 and ≤16 years, respectively (P = 0.005). Stx-HUS was more frequent compared to cases not associated with STEC (P = 0.002). The incidence rate for Stx-HUS was 3.85 (1.76-5.65) in children ≤5, compared to 0.27 (0.00-0.54) per 100'000 children 5-16 years (P = 0.002), respectively. The incidence rate of cases not associated with STEC infection did not significantly vary with age (P = 0.107). Compared to data from Scotland, Canada, Ireland, Germany, England, Australia, Italy, and Austria the annual incidence rate of HUS in young children is highest in Switzerland. Ecological analysis revealed strong association between the incidence rate of Stx-HUS and indicators of rural occupation (agricultural labourer / population, P = 0.030), farming intensity (livestock breeding farms / population, P = 0.027) and cattle density (cattle / cultivated area, P = 0.013). Conclusions: Alike in other countries, HUS in Switzerland is mostly associated with STEC infection and affects predominantly young children. However, the incidence rate is higher compared to countries abroad and is significantly correlated with indicators of livestock farming intensity. The present data support the impact of direct and indirect contact with animals or fecal contaminants in transmission of STEC to humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P>To address whether seasonal variability exists among Shiga toxin-encoding bacteriophage (Stx phage) numbers on a cattle farm, conventional plaque assay was performed on water samples collected over a 17 month period. Distinct seasonal variation in bacteriophage numbers was evident, peaking between June and August. Removal of cattle from the pasture precipitated a reduction in bacteriophage numbers, and during the winter months, no bacteriophage infecting Escherichia coli were detected, a surprising occurrence considering that 1031 tailed-bacteriophages are estimated to populate the globe. To address this discrepancy a culture-independent method based on quantitative PCR was developed. Primers targeting the Q gene and stx genes were designed that accurately and discriminately quantified artificial mixed lambdoid bacteriophage populations. Application of these primer sets to water samples possessing no detectable phages by plaque assay, demonstrated that the number of lambdoid bacteriophage ranged from 4.7 x 104 to 6.5 x 106 ml-1, with one in 103 free lambdoid bacteriophages carrying a Shiga toxin operon (stx). Specific molecular biological tools and discriminatory gene targets have enabled virus populations in the natural environment to be enumerated and similar strategies could replace existing propagation-dependent techniques, which grossly underestimate the abundance of viral entities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shiga-toxigenic Escherichia coli O157:H7 (STEC O157:H7) is associated with potentially fatal human disease, and a persistent reservoir of the organism is present in some farm animal species, especially cattle and sheep. The mechanisms of persistent colonisation of the ruminant intestine by STEC O157:H7 are poorly understood but may be associated with intimate adherence to eukaryotic cells. Intimate adherence, as evidenced by induction of attaching-effacing (AE) lesions by STEC O157, has been observed in 6-day-old conventional lambs after deliberate oral infection but not in older animals. Thus, the present study used a ligated intestinal loop technique to investigate whether STEC O157:H7 and other attaching-effacing E. coli may adhere intimately to the sheep large intestinal mucosa. To do this, four STEC O157:H7 strains, one STEC 026:K60:H11 and one Shiga toxin-negative E. coli O157:H7 strain, suspended in either phosphate-buffered saline or Dulbecco's modified Eagle's medium, were inoculated into ligated spiral colon loops of each of two lambs. The loops were removed 6 h after inoculation, fixed and examined by light and electron microscopy. AE lesions on the intestinal mucosa were produced by all the inoculated strains. However, the lesions were sparse and small, typically comprising bacterial cells intimately adhered to a single enterocyte, or a few adjacent enterocytes. There was little correlation between the extent of intimate adherence in this model and the bacterial cell density, pre-inoculation growth conditions of the bacteria or the strain tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The culture supernatant of Escherichia coli, isolated from ostriches with diarrhea in Brazil, caused elongation in Vero cell, rounding in Chinese hamster ovary (CHO) cells and a cytoplasmic vacuolation in ostrich embryo fibroblasts (OEF), but it was not cytotoxic for chicken embryo fibroblasts (CEF). These effects were not neutralized by antiserum to cholera toxin. Polymerase chain reaction assays showed that the ostrich E.coli contained the gene encoding (eltII-A), but not those for type 1 heat-labile enterotoxin (eltA), heat-stable enterotoxins (estA, estB), verocytotoxins (stx-I, stx-II), or cytotoxic necrotizing factors (cnf 1, cnf 2). All isolates belonged to serotype O15:H8. The enteropathogenic relevance of LT-II in ostrich diarrhea remains undetermined. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Up to 60% of U.S. visitors to Mexico develop traveler's diarrhea (TD), mostly due to enterotoxigenic Escherichia coli (ETEC) strains that produce heat-labile (LT) and/or heat-stable (ST) enterotoxins. Distinct single-nucleotide polymorphisms (SNPs) within the interleukin-10 (IL-10) promoter have been associated with high, intermediate, or low production of IL-10. We conducted a prospective study to investigate the association of SNPs in the IL-10 promoter and the occurrence of TD in ETEC LT-exposed travelers. Sera from U.S. travelers to Mexico collected on arrival and departure were studied for ETEC LT seroconversion by using cholera toxin as the antigen. Pyrosequencing was performed to genotype IL-10 SNPs. Stools from subjects who developed diarrhea were also studied for other enteropathogens. One hundred twenty-one of 569 (21.3%) travelers seroconverted to ETEC LT, and among them 75 (62%) developed diarrhea. Symptomatic seroconversion was more commonly seen in subjects who carried a genotype producing high levels of IL-10; it was seen in 83% of subjects with the GG genotype versus 54% of subjects with the AA genotype at IL-10 gene position -1082 (P, 0.02), in 71% of those with the CC genotype versus 33% of those with the TT genotype at position -819 (P, 0.005), and in 71% of those with the CC genotype versus 38% of those with the AA genotype at position -592 (P, 0.02). Travelers with the GCC haplotype were more likely to have symptomatic seroconversion than those with the ATA haplotype (71% versus 38%; P, 0.002). Travelers genetically predisposed to produce high levels of IL-10 were more likely to experience symptomatic ETEC TD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twenty-five extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli clinical isolates from Rio de Janeiro, Brazil were characterized by isoelectric focusing, PCR and sequencing of bla(ESBL) genes, plasmid-mediated quinolone resistance determinants, phylogenetic groups, replicon typing, pulsed-field electrophoresis, and multilocus sequencing typing. Twenty-three (92%) ESBL-producing E. coli isolates were positive for bla(CTX-M) genes, aac(6`)-lb-cr, and qnrB. Genetic relatedness of ESBL producers clustered seven (28%) CTX-M-15-producing isolates as sequence type (ST) 410, clonal complex (CC) 23, and two (8%) as clone O25-ST131. Our results illustrate the predominance of phylo-group A (52%), ST410 (CC 23) and CTX-M-15 among ESBL-producing E. coli isolates from hospitals in Rio de Janeiro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AbstractINTRODUCTIONThe aim of this study was to detect the prevalence of the extended-spectrum beta-lactamase (ESBL)-encoding CTX-M gene in Escherichia coliisolates.METHODS:Phenotypic screening of 376 E. coli isolates for ESBL was conducted using disk diffusion. ESBL-producing isolates were tested using PCR and specific primers. The blaCTX-M cluster was identified using the RFLP method, and its genotype was sequenced.RESULTS:From 202 ESBL-producing E. coli , 185 (91.5%) possessed CTX-M genes. CTX-M-1 subtypes were found in 98% of the isolates. The blaCTX-M gene was identical to CTX-M-15.CONCLUSIONS:A high prevalence of CTX-M-1-producing E. coli apparently exists in Shiraz, Iran.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The agar dilution, broth microdilution, and disk diffusion methods were compared to determine the in vitro susceptibility of 428 extended-spectrum-beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae to fosfomycin. Fosfomycin showed very high activity against all ESBL-producing strains. Excellent agreement between the three susceptibility methods was found for E. coli, whereas marked discrepancies were observed for K. pneumoniae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli, particularly those producing CTX-M types of ESBL, are emerging pathogens. Bacteremia caused by these organisms represents a clinical challenge, because the organisms are frequently resistant to the antimicrobials recommended for treatment of patients with suspected E. coli sepsis. METHODS:A cohort study was performed that included all episodes of bloodstream infection due to ESBL-producing E. coli during the period from January 2001 through March 2005. Data on predisposing factors, clinical presentation, and outcome were collected. ESBLs were characterized using isoelectric focusing, polymerase chain reaction, and sequencing. RESULTS: Forty-three episodes (8.8% of cases of bacteremia due to E. coli) were included; 70% of the isolates produced a CTX-M type of ESBL. The most frequent origins of infection were the urinary (46%) and biliary tracts (21%). Acquisition was nosocomial in 21 cases (49%), health care associated in 14 cases (32%), and strictly community acquired in 8 cases (19%). Thirty-eight percent and 25% of patients had obstructive diseases of the urinary and biliary tracts, respectively, and 38% had recently received antimicrobials. Nine patients (21%) died. Compared with beta-lactam/beta-lactamase-inhibitor and carbapenem-based regimens, empirical therapy with cephalosporins or fluoroquinolones was associated with a higher mortality rate (9% vs. 35%; P=.05) and needed to be changed more frequently (24% vs. 78%; P=.001). CONCLUSIONS: ESBL-producing E. coli is a significant cause of bloodstream infection in hospitalized and nonhospitalized patients in the context of the emergence of CTX-M enzymes. Empirical treatment of sepsis potentially caused by E. coli may need to be reconsidered in areas where such ESBL-producing isolates are present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Extended-spectrum beta-lactamase (ESBL)-producing members of the Enterobacteriaceae family are important nosocomial pathogens. Escherichia coli producing a specific family of ESBL (the CTX-M enzymes) are emerging worldwide. The epidemiology of these organisms as causes of nosocomial infection is poorly understood. The aims of this study were to investigate the clinical and molecular epidemiology of nosocomial infection or colonization due to ESBL-producing E. coli in hospitalized patients, consider the specific types of ESBLs produced, and identify the risk factors for infection and colonization with these organisms. METHODS: All patients with nosocomial colonization and/or infection due to ESBL-producing E. coli in 2 centers (a tertiary care hospital and a geriatric care center) identified between January 2001 and May 2002 were included. A double case-control study was performed. The clonal relatedness of the isolates was studied by repetitive extragenic palindromic-polymerase chain reaction and pulsed-field gel electrophoresis. ESBLs were characterized by isoelectric focusing, polymerase chain reaction, and sequencing. RESULTS: Forty-seven case patients were included. CTX-M-producing E. coli were clonally unrelated and more frequently susceptible to nonoxyimino-beta-lactams. Alternately, isolates producing SHV- and TEM-type ESBL were epidemic and multidrug resistant. Urinary catheterization was a risk factor for both CTX-M-producing and SHV-TEM-producing isolates. Previous oxyimino-beta-lactam use, diabetes, and ultimately fatal or nonfatal underlying diseases were independent risk factors for infection or colonization with CTX-M-producing isolates, whereas previous fluoroquinolone use was associated with infection or colonization with SHV-TEM-producing isolates. CONCLUSIONS: The epidemiology of ESBL-producing E. coli as a cause of nosocomial infection is complex. Sporadic CTX-M-producing isolates coexisted with epidemic multidrug-resistant SHV-TEM-producing isolates. These data should be taken into account for the design of control measures.