980 resultados para Runge-Kutta methods
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background: The study of myofiber reorganization in the remote zone after myocardial infarction has been performed in 2D. Microstructural reorganization in remodeled hearts, however, can only be fully appreciated by considering myofibers as continuous 3D entities. The aim of this study was therefore to develop a technique for quantitative 3D diffusion CMR tractography of the heart, and to apply this method to quantify fiber architecture in the remote zone of remodeled hearts. Methods: Diffusion Tensor CMR of normal human, sheep, and rat hearts, as well as infarcted sheep hearts was performed ex vivo. Fiber tracts were generated with a fourth-order Runge-Kutta integration technique and classified statistically by the median, mean, maximum, or minimum helix angle (HA) along the tract. An index of tract coherence was derived from the relationship between these HA statistics. Histological validation was performed using phase-contrast microscopy. Results: In normal hearts, the subendocardial and subepicardial myofibers had a positive and negative HA, respectively, forming a symmetric distribution around the midmyocardium. However, in the remote zone of the infarcted hearts, a significant positive shift in HA was observed. The ratio between negative and positive HA variance was reduced from 0.96 +/- 0.16 in normal hearts to 0.22 +/- 0.08 in the remote zone of the remodeled hearts (p<0.05). This was confirmed histologically by the reduction of HA in the subepicardium from -52.03 degrees +/- 2.94 degrees in normal hearts to -37.48 degrees +/- 4.05 degrees in the remote zone of the remodeled hearts (p < 0.05). Conclusions: A significant reorganization of the 3D fiber continuum is observed in the remote zone of remodeled hearts. The positive (rightward) shift in HA in the remote zone is greatest in the subepicardium, but involves all layers of the myocardium. Tractography-based quantification, performed here for the first time in remodeled hearts, may provide a framework for assessing regional changes in the left ventricle following infarction.
Resumo:
The boundary layer over concave surfaces can be unstable due to centrifugal forces, giving rise to Goertler vortices. These vortices create two regions in the spanwise direction—the upwash and downwash regions. The downwash region is responsible for compressing the boundary layer toward the wall, increasing the heat transfer rate. The upwash region does the opposite. In the nonlinear development of the Goertler vortices, it can be observed that the upwash region becomes narrow and the spanwise–average heat transfer rate is higher than that for a Blasius boundary layer. This paper analyzes the influence of the spanwise wavelength of the Goertler the heat transfer. The equation is written in vorticity-velocity formulation. The time integration is done via a classical fourth-order Runge-Kutta method. The spatial derivatives are calculated using high-order compact finite difference and spectral methods. Three different wavelengths are analyzed. The results show that steady Goertler flow can increase the heat transfer rates to values close to the values of turbulence, without the existence of a secondary instability. The geometry (and computation domain) are presented
Resumo:
In dieser Arbeit wird ein neuer Dynamikkern entwickelt und in das bestehendernnumerische Wettervorhersagesystem COSMO integriert. Für die räumlichernDiskretisierung werden diskontinuierliche Galerkin-Verfahren (DG-Verfahren)rnverwendet, für die zeitliche Runge-Kutta-Verfahren. Hierdurch ist ein Verfahrenrnhoher Ordnung einfach zu realisieren und es sind lokale Erhaltungseigenschaftenrnder prognostischen Variablen gegeben. Der hier entwickelte Dynamikkern verwendetrngeländefolgende Koordinaten in Erhaltungsform für die Orographiemodellierung undrnkoppelt das DG-Verfahren mit einem Kessler-Schema für warmen Niederschlag. Dabeirnwird die Fallgeschwindigkeit des Regens, nicht wie üblich implizit imrnKessler-Schema diskretisiert, sondern explizit im Dynamikkern. Hierdurch sindrndie Zeitschritte der Parametrisierung für die Phasenumwandlung des Wassers undrnfür die Dynamik vollständig entkoppelt, wodurch auch sehr große Zeitschritte fürrndie Parametrisierung verwendet werden können. Die Kopplung ist sowohl fürrnOperatoraufteilung, als auch für Prozessaufteilung realisiert.rnrnAnhand idealisierter Testfälle werden die Konvergenz und die globalenrnErhaltungseigenschaften des neu entwickelten Dynamikkerns validiert. Die Massernwird bis auf Maschinengenauigkeit global erhalten. Mittels Bergüberströmungenrnwird die Orographiemodellierung validiert. Die verwendete Kombination ausrnDG-Verfahren und geländefolgenden Koordinaten ermöglicht die Behandlung vonrnsteileren Bergen, als dies mit dem auf Finite-Differenzenverfahren-basierendenrnDynamikkern von COSMO möglich ist. Es wird gezeigt, wann die vollernTensorproduktbasis und wann die Minimalbasis vorteilhaft ist. Die Größe desrnEinflusses auf das Simulationsergebnis der Verfahrensordnung, desrnParametrisierungszeitschritts und der Aufteilungsstrategie wirdrnuntersucht. Zuletzt wird gezeigt dass bei gleichem Zeitschritt die DG-Verfahrenrnaufgrund der besseren Skalierbarkeit in der Laufzeit konkurrenzfähig zurnFinite-Differenzenverfahren sind.
Resumo:
The Scilla rock avalanche occurred on 6 February 1783 along the coast of the Calabria region (southern Italy), close to the Messina Strait. It was triggered by a mainshock of the Terremoto delle Calabrie seismic sequence, and it induced a tsunami wave responsible for more than 1500 casualties along the neighboring Marina Grande beach. The main goal of this work is the application of semi-analtycal and numerical models to simulate this event. The first one is a MATLAB code expressly created for this work that solves the equations of motion for sliding particles on a two-dimensional surface through a fourth-order Runge-Kutta method. The second one is a code developed by the Tsunami Research Team of the Department of Physics and Astronomy (DIFA) of the Bologna University that describes a slide as a chain of blocks able to interact while sliding down over a slope and adopts a Lagrangian point of view. A wide description of landslide phenomena and in particular of landslides induced by earthquakes and with tsunamigenic potential is proposed in the first part of the work. Subsequently, the physical and mathematical background is presented; in particular, a detailed study on derivatives discratization is provided. Later on, a description of the dynamics of a point-mass sliding on a surface is proposed together with several applications of numerical and analytical models over ideal topographies. In the last part, the dynamics of points sliding on a surface and interacting with each other is proposed. Similarly, different application on an ideal topography are shown. Finally, the applications on the 1783 Scilla event are shown and discussed.
Resumo:
El objetivo de esta Tesis ha sido la consecución de simulaciones en tiempo real de vehículos industriales modelizados como sistemas multicuerpo complejos formados por sólidos rígidos. Para el desarrollo de un programa de simulación deben considerarse cuatro aspectos fundamentales: la modelización del sistema multicuerpo (tipos de coordenadas, pares ideales o impuestos mediante fuerzas), la formulación a utilizar para plantear las ecuaciones diferenciales del movimiento (coordenadas dependientes o independientes, métodos globales o topológicos, forma de imponer las ecuaciones de restricción), el método de integración numérica para resolver estas ecuaciones en el tiempo (integradores explícitos o implícitos) y finalmente los detalles de la implementación realizada (lenguaje de programación, librerías matemáticas, técnicas de paralelización). Estas cuatro etapas están interrelacionadas entre sí y todas han formado parte de este trabajo. Desde la generación de modelos de una furgoneta y de camión con semirremolque, el uso de tres formulaciones dinámicas diferentes, la integración de las ecuaciones diferenciales del movimiento mediante métodos explícitos e implícitos, hasta el uso de funciones BLAS, de técnicas de matrices sparse y la introducción de paralelización para utilizar los distintos núcleos del procesador. El trabajo presentado en esta Tesis ha sido organizado en 8 capítulos, dedicándose el primero de ellos a la Introducción. En el Capítulo 2 se presentan dos formulaciones semirrecursivas diferentes, de las cuales la primera está basada en una doble transformación de velocidades, obteniéndose las ecuaciones diferenciales del movimiento en función de las aceleraciones relativas independientes. La integración numérica de estas ecuaciones se ha realizado con el método de Runge-Kutta explícito de cuarto orden. La segunda formulación está basada en coordenadas relativas dependientes, imponiendo las restricciones por medio de penalizadores en posición y corrigiendo las velocidades y aceleraciones mediante métodos de proyección. En este segundo caso la integración de las ecuaciones del movimiento se ha llevado a cabo mediante el integrador implícito HHT (Hilber, Hughes and Taylor), perteneciente a la familia de integradores estructurales de Newmark. En el Capítulo 3 se introduce la tercera formulación utilizada en esta Tesis. En este caso las uniones entre los sólidos del sistema se ha realizado mediante uniones flexibles, lo que obliga a imponer los pares por medio de fuerzas. Este tipo de uniones impide trabajar con coordenadas relativas, por lo que la posición del sistema y el planteamiento de las ecuaciones del movimiento se ha realizado utilizando coordenadas Cartesianas y parámetros de Euler. En esta formulación global se introducen las restricciones mediante fuerzas (con un planteamiento similar al de los penalizadores) y la estabilización del proceso de integración numérica se realiza también mediante proyecciones de velocidades y aceleraciones. En el Capítulo 4 se presenta una revisión de las principales herramientas y estrategias utilizadas para aumentar la eficiencia de las implementaciones de los distintos algoritmos. En primer lugar se incluye una serie de consideraciones básicas para aumentar la eficiencia numérica de las implementaciones. A continuación se mencionan las principales características de los analizadores de códigos utilizados y también las librerías matemáticas utilizadas para resolver los problemas de álgebra lineal tanto con matrices densas como sparse. Por último se desarrolla con un cierto detalle el tema de la paralelización en los actuales procesadores de varios núcleos, describiendo para ello el patrón empleado y las características más importantes de las dos herramientas propuestas, OpenMP y las TBB de Intel. Hay que señalar que las características de los sistemas multicuerpo problemas de pequeño tamaño, frecuente uso de la recursividad, y repetición intensiva en el tiempo de los cálculos con fuerte dependencia de los resultados anteriores dificultan extraordinariamente el uso de técnicas de paralelización frente a otras áreas de la mecánica computacional, tales como por ejemplo el cálculo por elementos finitos. Basándose en los conceptos mencionados en el Capítulo 4, el Capítulo 5 está dividido en tres secciones, una para cada formulación propuesta en esta Tesis. En cada una de estas secciones se describen los detalles de cómo se han realizado las distintas implementaciones propuestas para cada algoritmo y qué herramientas se han utilizado para ello. En la primera sección se muestra el uso de librerías numéricas para matrices densas y sparse en la formulación topológica semirrecursiva basada en la doble transformación de velocidades. En la segunda se describe la utilización de paralelización mediante OpenMP y TBB en la formulación semirrecursiva con penalizadores y proyecciones. Por último, se describe el uso de técnicas de matrices sparse y paralelización en la formulación global con uniones flexibles y parámetros de Euler. El Capítulo 6 describe los resultados alcanzados mediante las formulaciones e implementaciones descritas previamente. Este capítulo comienza con una descripción de la modelización y topología de los dos vehículos estudiados. El primer modelo es un vehículo de dos ejes del tipo chasis-cabina o furgoneta, perteneciente a la gama de vehículos de carga medianos. El segundo es un vehículo de cinco ejes que responde al modelo de un camión o cabina con semirremolque, perteneciente a la categoría de vehículos industriales pesados. En este capítulo además se realiza un estudio comparativo entre las simulaciones de estos vehículos con cada una de las formulaciones utilizadas y se presentan de modo cuantitativo los efectos de las mejoras alcanzadas con las distintas estrategias propuestas en esta Tesis. Con objeto de extraer conclusiones más fácilmente y para evaluar de un modo más objetivo las mejoras introducidas en la Tesis, todos los resultados de este capítulo se han obtenido con el mismo computador, que era el top de la gama Intel Xeon en 2007, pero que hoy día está ya algo obsoleto. Por último los Capítulos 7 y 8 están dedicados a las conclusiones finales y las futuras líneas de investigación que pueden derivar del trabajo realizado en esta Tesis. Los objetivos de realizar simulaciones en tiempo real de vehículos industriales de gran complejidad han sido alcanzados con varias de las formulaciones e implementaciones desarrolladas. ABSTRACT The objective of this Dissertation has been the achievement of real time simulations of industrial vehicles modeled as complex multibody systems made up by rigid bodies. For the development of a simulation program, four main aspects must be considered: the modeling of the multibody system (types of coordinates, ideal joints or imposed by means of forces), the formulation to be used to set the differential equations of motion (dependent or independent coordinates, global or topological methods, ways to impose constraints equations), the method of numerical integration to solve these equations in time (explicit or implicit integrators) and the details of the implementation carried out (programming language, mathematical libraries, parallelization techniques). These four stages are interrelated and all of them are part of this work. They involve the generation of models for a van and a semitrailer truck, the use of three different dynamic formulations, the integration of differential equations of motion through explicit and implicit methods, the use of BLAS functions and sparse matrix techniques, and the introduction of parallelization to use the different processor cores. The work presented in this Dissertation has been structured in eight chapters, the first of them being the Introduction. In Chapter 2, two different semi-recursive formulations are shown, of which the first one is based on a double velocity transformation, thus getting the differential equations of motion as a function of the independent relative accelerations. The numerical integration of these equations has been made with the Runge-Kutta explicit method of fourth order. The second formulation is based on dependent relative coordinates, imposing the constraints by means of position penalty coefficients and correcting the velocities and accelerations by projection methods. In this second case, the integration of the motion equations has been carried out by means of the HHT implicit integrator (Hilber, Hughes and Taylor), which belongs to the Newmark structural integrators family. In Chapter 3, the third formulation used in this Dissertation is presented. In this case, the joints between the bodies of the system have been considered as flexible joints, with forces used to impose the joint conditions. This kind of union hinders to work with relative coordinates, so the position of the system bodies and the setting of the equations of motion have been carried out using Cartesian coordinates and Euler parameters. In this global formulation, constraints are introduced through forces (with a similar approach to the penalty coefficients) are presented. The stabilization of the numerical integration is carried out also by velocity and accelerations projections. In Chapter 4, a revision of the main computer tools and strategies used to increase the efficiency of the implementations of the algorithms is presented. First of all, some basic considerations to increase the numerical efficiency of the implementations are included. Then the main characteristics of the code’ analyzers used and also the mathematical libraries used to solve linear algebra problems (both with dense and sparse matrices) are mentioned. Finally, the topic of parallelization in current multicore processors is developed thoroughly. For that, the pattern used and the most important characteristics of the tools proposed, OpenMP and Intel TBB, are described. It needs to be highlighted that the characteristics of multibody systems small size problems, frequent recursion use and intensive repetition along the time of the calculation with high dependencies of the previous results complicate extraordinarily the use of parallelization techniques against other computational mechanics areas, as the finite elements computation. Based on the concepts mentioned in Chapter 4, Chapter 5 is divided into three sections, one for each formulation proposed in this Dissertation. In each one of these sections, the details of how these different proposed implementations have been made for each algorithm and which tools have been used are described. In the first section, it is shown the use of numerical libraries for dense and sparse matrices in the semirecursive topological formulation based in the double velocity transformation. In the second one, the use of parallelization by means OpenMP and TBB is depicted in the semi-recursive formulation with penalization and projections. Lastly, the use of sparse matrices and parallelization techniques is described in the global formulation with flexible joints and Euler parameters. Chapter 6 depicts the achieved results through the formulations and implementations previously described. This chapter starts with a description of the modeling and topology of the two vehicles studied. The first model is a two-axle chassis-cabin or van like vehicle, which belongs to the range of medium charge vehicles. The second one is a five-axle vehicle belonging to the truck or cabin semi-trailer model, belonging to the heavy industrial vehicles category. In this chapter, a comparative study is done between the simulations of these vehicles with each one of the formulations used and the improvements achieved are presented in a quantitative way with the different strategies proposed in this Dissertation. With the aim of deducing the conclusions more easily and to evaluate in a more objective way the improvements introduced in the Dissertation, all the results of this chapter have been obtained with the same computer, which was the top one among the Intel Xeon range in 2007, but which is rather obsolete today. Finally, Chapters 7 and 8 are dedicated to the final conclusions and the future research projects that can be derived from the work presented in this Dissertation. The objectives of doing real time simulations in high complex industrial vehicles have been achieved with the formulations and implementations developed.
Resumo:
In order to build dynamic models for prediction and management of degraded Mediterranean forest areas was necessary to build MARIOLA model, which is a calculation computer program. This model includes the following subprograms. 1) bioshrub program, which calculates total, green and woody shrubs biomass and it establishes the time differences to calculate the growth. 2) selego program, which builds the flow equations from the experimental data. It is based on advanced procedures of statistical multiple regression. 3) VEGETATION program, which solves the state equations with Euler or Runge-Kutta integration methods. Each one of these subprograms can act as independent or as linked programs.
Resumo:
In this work we discuss the effects of white and coloured noise perturbations on the parameters of a mathematical model of bacteriophage infection introduced by Beretta and Kuang in [Math. Biosc. 149 (1998) 57]. We numerically simulate the strong solutions of the resulting systems of stochastic ordinary differential equations (SDEs), with respect to the global error, by means of numerical methods of both Euler-Taylor expansion and stochastic Runge-Kutta type. (C) 2003 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
A new integration scheme is developed for nonequilibrium molecular dynamics simulations where the temperature is constrained by a Gaussian thermostat. The utility of the scheme is demonstrated by its application to the SLLOD algorithm which is the standard nonequilibrium molecular dynamics algorithm for studying shear flow. Unlike conventional integrators, the new integrators are constructed using operator-splitting techniques to ensure stability and that little or no drift in the kinetic energy occurs. Moreover, they require minimum computer memory and are straightforward to program. Numerical experiments show that the efficiency and stability of the new integrators compare favorably with conventional integrators such as the Runge-Kutta and Gear predictor-corrector methods. (C) 1999 American Institute of Physics. [S0021-9606(99)50125-6].
Resumo:
The research carried out in this thesis was mainly concerned with the effects of large induction motors and their transient performance in power systems. Computer packages using the three phase co-ordinate frame of reference were developed to simulate the induction motor transient performance. A technique using matrix algebra was developed to allow extension of the three phase co-ordinate method to analyse asymmetrical and symmetrical faults on both sides of the three phase delta-star transformer which is usually required when connecting large induction motors to the supply system. System simulation, applying these two techniques, was used to study the transient stability of a power system. The response of a typical system, loaded with a group of large induction motors, two three-phase delta-star transformers, a synchronous generator and an infinite system was analysed. The computer software developed to study this system has the advantage that different types of fault at different locations can be studied by simple changes in input data. The research also involved investigating the possibility of using different integrating routines such as Runge-Kutta-Gill, RungeKutta-Fehlberg and the Predictor-Corrector methods. The investigation enables the reduction of computation time, which is necessary when solving the induction motor equations expressed in terms of the three phase variables. The outcome of this investigation was utilised in analysing an introductory model (containing only minimal control action) of an isolated system having a significant induction motor load compared to the size of the generator energising the system.
Resumo:
A computational study for the convergence acceleration of Euler and Navier-Stokes computations with upwind schemes has been conducted in a unified framework. It involves the flux-vector splitting algorithms due to Steger-Warming and Van Leer, the flux-difference splitting algorithms due to Roe and Osher and the hybrid algorithms, AUSM (Advection Upstream Splitting Method) and HUS (Hybrid Upwind Splitting). Implicit time integration with line Gauss-Seidel relaxation and multigrid are among the procedures which have been systematically investigated on an individual as well as cumulative basis. The upwind schemes have been tested in various implicit-explicit operator combinations such that the optimal among them can be determined based on extensive computations for two-dimensional flows in subsonic, transonic, supersonic and hypersonic flow regimes. In this study, the performance of these implicit time-integration procedures has been systematically compared with those corresponding to a multigrid accelerated explicit Runge-Kutta method. It has been demonstrated that a multigrid method employed in conjunction with an implicit time-integration scheme yields distinctly superior convergence as compared to those associated with either of the acceleration procedures provided that effective smoothers, which have been identified in this investigation, are prescribed in the implicit operator.
Resumo:
In this paper, we have first given a numerical procedure for the solution of second order non-linear ordinary differential equations of the type y″ = f (x;y, y′) with given initial conditions. The method is based on geometrical interpretation of the equation, which suggests a simple geometrical construction of the integral curve. We then translate this geometrical method to the numerical procedure adaptable to desk calculators and digital computers. We have studied the efficacy of this method with the help of an illustrative example with known exact solution. We have also compared it with Runge-Kutta method. We have then applied this method to a physical problem, namely, the study of the temperature distribution in a semi-infinite solid homogeneous medium for temperature-dependent conductivity coefficient.
Resumo:
In this paper, the steady laminar viscous hypersonic flow of an electrically conducting fluid in the region of the stagnation point of an insulating blunt body in the presence of a radial magnetic field is studied by similarity solution approach, taking into account the variation of the product of density and viscosity across the boundary layer. The two coupled non-linear ordinary differential equations are solved simultaneously using Runge-Kutta-Gill method. It has been found that the effect of the variation of the product of density and viscosity on skin friction coefficient and Nusselt number is appreciable. The skin friction coefficient increases but Nusselt number decreases as the magnetic field or the total enthalpy at the wall increases
Resumo:
A numerical integration procedure for rotational motion using a rotation vector parametrization is explored from an engineering perspective by using rudimentary vector analysis. The incremental rotation vector, angular velocity and acceleration correspond to different tangent spaces of the rotation manifold at different times and have a non-vectorial character. We rewrite the equation of motion in terms of vectors lying in the same tangent space, facilitating vector space operations consistent with the underlying geometric structure. While any integration algorithm (that works within a vector space setting) may be used, we presently employ a family of explicit Runge-Kutta algorithms to solve this equation. While this work is primarily motivated out of a need for highly accurate numerical solutions of dissipative rotational systems of engineering interest, we also compare the numerical performance of the present scheme with some of the invariant preserving schemes, namely ALGO-C1, STW, LIEMIDEA] and SUBCYC-M. Numerical results show better local accuracy via the present approach vis-a-vis the preserving algorithms. It is also noted that the preserving algorithms do not simultaneously preserve all constants of motion. We incorporate adaptive time-stepping within the present scheme and this in turn enables still higher accuracy and a `near preservation' of constants of motion over significantly longer intervals. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.