Numerical procedure for second order non-linear ordinary differential equations and application to heat transfer problem


Autoria(s): Tikekar, VG; Prabhu, S
Data(s)

01/06/1970

Resumo

In this paper, we have first given a numerical procedure for the solution of second order non-linear ordinary differential equations of the type y″ = f (x;y, y′) with given initial conditions. The method is based on geometrical interpretation of the equation, which suggests a simple geometrical construction of the integral curve. We then translate this geometrical method to the numerical procedure adaptable to desk calculators and digital computers. We have studied the efficacy of this method with the help of an illustrative example with known exact solution. We have also compared it with Runge-Kutta method. We have then applied this method to a physical problem, namely, the study of the temperature distribution in a semi-infinite solid homogeneous medium for temperature-dependent conductivity coefficient.

Formato

application/pdf

Identificador

http://eprints.iisc.ernet.in/28149/1/numeerical.pdf

Tikekar, VG and Prabhu, S (1970) Numerical procedure for second order non-linear ordinary differential equations and application to heat transfer problem. In: Proceedings of the Indian Academy of Sciences - Section A, 71 (6). pp. 288-297.

Publicador

Springer India, in co-publication with Indian Academy of Sciences

Relação

http://www.springerlink.com/content/l347813848287513/

http://eprints.iisc.ernet.in/28149/

Palavras-Chave #Mathematics
Tipo

Journal Article

PeerReviewed