Numerical procedure for second order non-linear ordinary differential equations and application to heat transfer problem
Data(s) |
01/06/1970
|
---|---|
Resumo |
In this paper, we have first given a numerical procedure for the solution of second order non-linear ordinary differential equations of the type y″ = f (x;y, y′) with given initial conditions. The method is based on geometrical interpretation of the equation, which suggests a simple geometrical construction of the integral curve. We then translate this geometrical method to the numerical procedure adaptable to desk calculators and digital computers. We have studied the efficacy of this method with the help of an illustrative example with known exact solution. We have also compared it with Runge-Kutta method. We have then applied this method to a physical problem, namely, the study of the temperature distribution in a semi-infinite solid homogeneous medium for temperature-dependent conductivity coefficient. |
Formato |
application/pdf |
Identificador |
http://eprints.iisc.ernet.in/28149/1/numeerical.pdf Tikekar, VG and Prabhu, S (1970) Numerical procedure for second order non-linear ordinary differential equations and application to heat transfer problem. In: Proceedings of the Indian Academy of Sciences - Section A, 71 (6). pp. 288-297. |
Publicador |
Springer India, in co-publication with Indian Academy of Sciences |
Relação |
http://www.springerlink.com/content/l347813848287513/ http://eprints.iisc.ernet.in/28149/ |
Palavras-Chave | #Mathematics |
Tipo |
Journal Article PeerReviewed |