992 resultados para Rigidity to the shear


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behaviour of Basalt Fibre Reinforced Polymer (BFRP) loaded perpendicular to glulam timber elements was investigated. It was found that pull-out load increased approximately linearly with the bonded length up to maximum which occurred at a bonded length of 250 mm (~15 times the hole diameter) and did not increase beyond this bonded length. Failure mode of the samples was mostly shear fracture which was located at the cylindrical zone at the timber/adhesive interface. Increased bonded lengths resulted in corresponding decrease in interfacial bond stress. At 250 mm bonded length, the pull-out capacity of the proposed design model was about 2% lower than that of the tests. The results also showed that the bond stress of the theoretical model (at the ascending and descending branches) of the stress–slip curve was approximately 5–10% of that of the experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid and robust methods are required to quantify the effect of hydrodynamic shear on protein conformation change. We evaluated such strategies in this work and found that the binding of the fluorescent probe 4,4'-dianilino-1, 1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) to hydrophobic pockets in the blood protein von Willebrand factor (VWF) is enhanced upon the application of fluid shear to the isolated protein. Significant structural changes were observed when the protein was sheared at shear rates >= 6000/s for similar to 3.5 min. The binding of bis-ANS to multimeric VWF, but not dimeric VWF or control protein bovine serum albumin, was enhanced upon fluid shear application. Thus, high-molecular-weight VWF is more susceptible to conformation change upon tensile loading. Although bis-ANS itself did not alter the conformation of VWF, it stabilized protein conformation once it bound the sheared molecule. Bis-ANS binding to VWF was reduced when the sheared protein was allowed to relax before dye addition. Taken together with functional data in the literature, our results suggest that shear-induced conformation changes in VWF reported by bis-ANS correlate well with the normal function of the protein under physiological/pathological fluid flow conditions. Further, this study introduces the fluorescent dye bis-ANS as a tool that may be useful in studies of shear-induced protein conformation change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biofilms are communities of microbial cells that underpin diverse processes including sewage bioremediation, plant growth promotion, chronic infections and industrial biofouling. The cells resident in the biofilm are encased within a self-produced exopolymeric matrix that commonly comprises lipids, proteins that frequently exhibit amyloid-like properties, eDNA and exopolysaccharides. This matrix fulfils a variety of functions for the community, from providing structural rigidity and protection from the external environment to controlling gene regulation and nutrient adsorption. Critical to the development of novel strategies to control biofilm infections, or the capability to capitalize on the power of biofilm formation for industrial and biotechnological uses, is an in-depth knowledge of the biofilm matrix. This is with respect to the structure of the individual components, the nature of the interactions between the molecules and the three-dimensional spatial organization. We highlight recent advances in the understanding of the structural and functional role that carbohydrates and proteins play within the biofilm matrix to provide three-dimensional architectural integrity and functionality to the biofilm community. We highlight, where relevant, experimental techniques that are allowing the boundaries of our understanding of the biofilm matrix to be extended using Escherichia coli, Staphylococcus aureus, Vibrio cholerae, and Bacillus subtilis as exemplars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel digital image correlation (DIC) technique has been developed to track changes in textile yarn orientations during shear characterisation experiments, requiring only low-cost digital imaging equipment. Fabric shear angles and effective yarn strains are calculated and visualised using this new DIC technique for bias extension testing of an aerospace grade, carbon-fibre reinforcement material with a plain weave architecture. The DIC results are validated by direct measurement, and the use of a wide bias extension sample is evaluated against a more commonly used narrow sample. Wide samples exhibit a shear angle range 25% greater than narrow samples and peak loads which are 10 times higher. This is primarily due to excessive yarn slippage in the narrow samples; hence, the wide sample configuration is recommended for characterisation of shear properties which are required for accurate modelling of textile draping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental and numerical investigation into the shear strength behaviour of adhesive single lap joints (SLJs) was carried out in order to understand the effect of temperature on the joint strength. The adherend material used for the experimental tests was an aluminium alloy in the form of thin sheets, and the adhesive used was a high-strength high temperature epoxy. Tensile tests as a function of temperature were performed and numerical predictions based on the use of a bilinear cohesive damage model were obtained. It is shown that at temperatures below Tg, the lap shear strength of SLJs increased, while at temperatures above Tg, a drastic drop in the lap shear strength was observed. Comparison between the experimental and numerical maximum loads representing the strength of the joints shows a reasonably good agreement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Dummer Complex extends 180 km along the Precambrian - Paleozoic contact from Tamworth to Lake Simcoe. It is composed of coarse, angular Paleozoic clasts in discontinuous, pitted, hummocky deposits. Deposits are usually separated by bare or boulder strewn bedrock, but have been found in the southern drumlinized till sheet. Dummer Complex deposits show rough alignment with ice-flow. Eskers cross-cut many of the deposits. Dummer sediment subfacies are defined on the basis of dominant coarse grain size and lithology, which relate directly to the underlying Paleozoic formation. Three subglacial tills are identified based on the degree of comminution and distance of transport; the immature facies of the Dummer Complex; the mature facies of the drumlinized till sheet and; the submature facies which is transitional. Carbonate geochemistry was used for till-bedrock correlation in various grain sizes. Of the 3 Paleozoic formations underlying the Dummer Complex, the Gull River Fm. is geochemically distinctive from the Bobcaygeon and Verulam Formations using Ca, Mg, Sr, Cu, Mn, Fe and Na. The Bobcaygeon Fm. and Verulam Fm. can be differentiated using Ca and the Sr/Ca ratio. The immature facies from 1.0 phi and finer is dominated by the non-carbonate, long distance transported component which decreases slightly downice. The submature till facies contains more long distance material than the immature facies. Sr and Mn can be used to correlate the Gull River immature till facies to the underlying bedrock the other subfacies could not be distinguished from each other or their respective source formation. This method proved to be ineffective for sediments with greater than 35% non-carbonate component, due to leaching of elements by the dissolving acid.The Dummer Complex is produced subglacially , as the compressional ice encounters the permeable Paleozoic carbonates. The increased shear strength of the ice and pore pressures in the carbonates results in the basal ice zones becoming debris ladden. Cleaner ice overrides the basal debris . laden dead ice which then acts as the glacier bed. During retreat, the Simcoe lobe stagnates as flow is cut-off by the Algonquin Highlands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction : La force d’adhésion à l'interface métal-céramique avec les résines auto-polymérisantes destinées au collage indirect des boîtiers orthodontiques n'a pas été évaluée à ce jour et un protocole clinique basé sur la littérature scientifique est inexistant. Objectifs : 1) Comparer la force de cisaillement maximale entre des boîtiers métalliques et des surfaces en porcelaine préparées selon différentes méthodes; 2) Suggérer un protocole clinique efficace et prévisible. Matériel et méthodes : Quatre-vingt-dix disques en leucite (6 groupes; n = 15/groupe) ont été préparés selon 6 combinaisons de traitements de surface : mécaniques (+ / - fraisage pour créer les rugosités) et chimiques (acide fluorhydrique, apprêt, silane). Des bases en résine composite Transbond XT (3M Unitek, Monrovia, California) faites sur mesure ont été collées avec le système de résine adhésive auto-polymérisante Sondhi A + B Rapid Set (3M Unitek, Monrovia, California). Les échantillons ont été préservés (H2O/24hrs), thermocyclés (500 cycles) et testés en cisaillement (Instron, Norwood, Massachusetts). Des mesures d’Index d’adhésif résiduel (IAR) ont été compilées. Des tests ANOVAs ont été réalisés sur les rangs étant donné que les données suivaient une distribution anormale et ont été ajustés selon Tukey. Un Kruskall-Wallis, U-Mann Whitney par comparaison pairée et une analyse de Weibull ont aussi été réalisés. Résultats : Les médianes des groupes varient entre 17.0 MPa (- fraisage + acide fluorhydrique) à 26.7 MPa (- fraisage + acide fluorhydrique + silane). Le fraisage en surface ne semble pas affecter l’adhésion. La combinaison chimique (- fraisage + silane + apprêt) a démontré des forces de cisaillement significativement plus élevées que le traitement avec (- fraisage + acide fluorhydrique), p<0,05, tout en possédant des forces similaires au protocole typiquement suggéré à l’acide fluorhydrique suivi d’une application de silane, l’équivalence de (- fraisage + acide fluorhydrique + silane). Les mesures d’IAR sont significativement plus basses dans le groupe (- fraisage + acide fluorhydrique) en comparaison avec celles des 5 autres groupes, avec p<0,05. Malheureusement, ces 5 groupes ont des taux de fracture élévés de 80 à 100% suite à la décimentation des boîtiers. Conclusion : Toutes les combinaisons de traitement de surface testées offrent une force d’adhésion cliniquement suffisante pour accomplir les mouvements dentaires en orthodontie. Une application de silane suivie d’un apprêt est forte intéressante, car elle est simple à appliquer cliniquement tout en permettant une excellente adhésion. Il faut cependant avertir les patients qu’il y a un risque de fracture des restorations en céramique lorsque vient le moment d’enlever les broches. Si la priorité est de diminuer le risque d’endommager la porcelaine, un mordançage seul à l’acide hydrofluorique sera suffisant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The constant-density Charney model describes the simplest unstable basic state with a planetary-vorticity gradient, which is uniform and positive, and baroclinicity that is manifest as a negative contribution to the potential-vorticity (PV) gradient at the ground and positive vertical wind shear. Together, these ingredients satisfy the necessary conditions for baroclinic instability. In Part I it was shown how baroclinic growth on a general zonal basic state can be viewed as the interaction of pairs of ‘counter-propagating Rossby waves’ (CRWs) that can be constructed from a growing normal mode and its decaying complex conjugate. In this paper the normal-mode solutions for the Charney model are studied from the CRW perspective. Clear parallels can be drawn between the most unstable modes of the Charney model and the Eady model, in which the CRWs can be derived independently of the normal modes. However, the dispersion curves for the two models are very different; the Eady model has a short-wave cut-off, while the Charney model is unstable at short wavelengths. Beyond its maximum growth rate the Charney model has a neutral point at finite wavelength (r=1). Thereafter follows a succession of unstable branches, each with weaker growth than the last, separated by neutral points at integer r—the so-called ‘Green branches’. A separate branch of westward-propagating neutral modes also originates from each neutral point. By approximating the lower CRW as a Rossby edge wave and the upper CRW structure as a single PV peak with a spread proportional to the Rossby scale height, the main features of the ‘Charney branch’ (0the normal modes. Furthermore, CRWs from this branch are seen to make a smooth transition into the boundary and interior PV structure of the neutral modes appearing at r=1. The behaviour of the other branches and neutral points is essentially the same when viewed from the CRW perspective, but with cancelling interior PV structures reducing the self and mutual interaction of the CRWs. The underlying dynamics determining the nature of all the solutions is the difference in the scale-dependence of PV inversion for boundary and interior PV anomalies, the Rossby-wave propagation mechanism and the CRW interaction. The behaviour of the Charney modes and the first neutral branch, which rely on tropospheric PV gradients, are arguably more applicable to the atmosphere than modes of the Eady model where the positive PV gradient exists only at the tropopause

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss some novel technologies that enable the implementation of shearing interferometry at the terahertz part of the spectrum. Possible applications include the direct measurement of lens parameters, the measurement of refractive index of materials that are transparent to terahertz frequencies, determination of homogeneity of samples, measurement of optical distortions and the non-contact evaluation of thermal expansion coefficient of materials buried inside media that are opaque to optical or infrared frequencies but transparent to THz frequencies. The introduction of a shear to a Gaussian free-space propagating terahertz beam in a controlled manner also makes possible a range of new encoding and optical signal processing modalities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a highly accurate tool for the simulation of shear Alfven waves (SAW) in collisionless plasma. SAW are important in space plasma environments because for small perpendicular scale lengths they can support an electric field parallel to the ambient magnetic field. Electrons can be accelerated by the parallel electric field and these waves have been implicated as the source of vibrant auroral displays. However, the parallel electric field carried by SAW is small in comparison to the perpendicular electric field of the wave, making it difficult to measure directly in the laboratory, or by satellites in the near-Earth plasma environment. In this paper, we present a simulation code that provides a means to study in detail the SAW-particle interaction in both space and laboratory plasma. Using idealised, small-amplitude propagating waves with a single perpendicular wavenumber, the simulation code accurately reproduces the damping rates and parallel electric field amplitudes predicted by linear theory for varying temperatures and perpendicular scale lengths. We present a rigorous kinetic derivation of the parallel electric field strength for small-amplitude SAW and show that commonly-used inertial and kinetic approximations are valid except for where the ratio of thermal to Alfv\'{e}n speed is between 0.7 and 1.0. We also present nonlinear simulations of large-amplitude waves and show that in cases of strong damping, the damping rates and parallel electric field strength deviate from linear predictions when wave energies are greater than only a few percent of the plasma kinetic energy, a situation which is often observed in the magnetosphere. The drift-kinetic code provides reliable, testable predictions of the parallel electric field strength which can be investigated directly in the laboratory, and will help to bridge the gap between studies of SAW in man-made and naturally occuring plasma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the direction of external electric field on the shear stress of an ER fluid has been studied by molecular-dynamics simulation. Due to the formation of inclined chains, the shear stress strongly depends on the direction of the field, and it may be very large under some special field direction. And theoretical model of ideal microstructure of ER fluids has proved this result. Thus the ER effect may be greatly enhanced just by choosing an optimum direction for the field without any additional requirement, suggesting a promising way to the practical application of ER fluids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To assess in vitro the shear bond strength at the resin/dentin interface in primary teeth after contamination with fresh human blood. Methods: 75 crowns of primary molars were embedded in acrylic resin and mechanically ground to expose a flat dentin surface. The specimens were randomly assigned to five groups (n=15), according to the surface treatment. Group I (control) had no blood contamination. The other groups were blood-contaminated and subjected to different post-contamination protocols: in Group 2, the surfaces were rinsed with water; in Group 3, the surfaces were air-dried; in Group 4, the surfaces were rinsed and air-dried; and in Group 5, no post-contamination treatment was done. In all groups, a 3-mm dentin bonding site was demarcated, Single Bond adhesive system was applied and resin composite cylinders were bonded. After 24 hours in distilled water, shear bond strength was tested at a crosshead speed of 0.5 mm/minute. Results: Means (in MPa) were: Group 1: 7.1 (+/- 4.2); Group 2: 4.0 (+/- 1.8); Group 3: 0.9 (+/- 0.7); Group 4: 3.9 (+/- 2.2) and Group 5: 1.3 (+/- 1.5). Data were analyzed statistically by the Kruskal-Wallis test at 5% significance level. Groups 2 and 4 were similar to each other (P > 0.05) and both ware similar to Group 1 (P > 0.05). These groups (2, 3 and 4) had statistically significantly higher bond strengths than Groups 3 and 5 (P < 0.05). Blood contamination negatively affected the shear bond strength to primary tooth dentin. Among the blood-contaminated groups, water-rinsed specimens had higher bond strengths than those that were exclusively air-dried or not submitted to any post-contamination protocol before adhesive application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The one-fluid magnetohydrodynamic (MHD) theory of magnetorotational instability (MRI) in an ideal plasma is presented. The theory predicts the possibility of MRI for arbitrary 0, where 0 is the ratio of the plasma pressure to the magnetic field pressure. The kinetic theory of MRI in a collisionless plasma is developed. It is demonstrated that as in the ideal MHD, MRI can occur in such a plasma for arbitrary P. The mechanism of MRI is discussed; it is shown that the instability appears because of a perturbed parallel electric field. The electrodynamic description of MRI is formulated under the assumption that the dispersion relation is expressed in terms of the permittivity tensor; general properties of this tensor are analyzed. It is shown to be separated into the nonrotational and rotational parts. With this in mind, the first step for incorporation of MRI into the general theory of plasma instabilities is taken. The rotation effects on Alfven waves are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used the fabrics of two granite plutons and U/Pb (SHRIMP) zircon ages to constrain the tectonic evolution of the E-trending Patos shear zone (Borborema Province, NE Brazil). The pre-tectonic Teixeira batholith consists of an amphibole leucogranite locally with aegirine-augite. Zircons from a syenogranite yielded crystallization ages of 591 +/- 5 Ma. The batholith fabrics were determined by anisotropy of magnetic susceptibility (AMS) and mineral shape preferred orientation. The fabrics support pre-transcurrent batholith emplacement, as evidenced by: (i) magmatic/magnetic fabrics in low susceptibility (<0.35 mSI) leucogranites highly discordant to the regional host rock structure, and (ii) concordant magnetic fabrics restricted to high susceptibility (>1 mSI) corridors connected to shear zones branching off from Patos. One of these satellite shear zones controlled the syntectonic emplacement of the Serra Redonda pluton, which yields a crystallization age of 576 +/- 3 Ma. This late shearing event marks the peak regional deformation that, south of Patos, was coupled to crustal shortening nearly perpendicular to the shear belt. The chronology of the deformational events indicates that the major shear zones of the eastern Borborema are late structures active after the crustal blocks amalgamated. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Approximate Lie symmetries of the Navier-Stokes equations are used for the applications to scaling phenomenon arising in turbulence. In particular, we show that the Lie symmetries of the Euler equations are inherited by the Navier-Stokes equations in the form of approximate symmetries that allows to involve the Reynolds number dependence into scaling laws. Moreover, the optimal systems of all finite-dimensional Lie subalgebras of the approximate symmetry transformations of the Navier-Stokes are constructed. We show how the scaling groups obtained can be used to introduce the Reynolds number dependence into scaling laws explicitly for stationary parallel turbulent shear flows. This is demonstrated in the framework of a new approach to derive scaling laws based on symmetry analysis [11]-[13].