963 resultados para Reversals: Process, Time Scale, Magnetostratigraphy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates the utilisation of a simplified model in the transient analysis of a thermal cooling process. In such process the external thermal resistance between the surface and the surroundings is high compared to the system internal thermal resistance, so that the first controls the heat transfer process. In this case the Biot number is lower than 0.1. Aluminium reels were utilised, which, with proper internal instrumentation, furnished experimental results for the thermal cooling process. Based on experimental data, a simplified model for the determination of the process film coefficient was used. Subsequently, experimental and theoretical results were compared. The change of the airflow direction was also investigated for the cooling process, aiming at process time optimisation. (C) 2001 Elsevier B.V. Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-of-flight photoemission spectromicroscopy was used to measure and compare the two-photon photoemission (2PPE) spectra of Cu and Ag nanoparticles with linear dimensions ranging between 40 nm and several 100 nm, with those of the corresponding homogeneous surfaces. 2PPE was induced employing femtosecond laser radiation from a frequency-doubled Ti:sapphire laser in the spectral range between 375 nm and 425 nm with a pulse width of 200 fs and a repetition rate of 80 MHz. The use of a pulsed radiation source allowed us to use a high-resolution photoemission electron microscope as imaging time-of-flight spectrometer, and thus to obtain spectroscopic information about the laterally resolved electron signal. Ag nanoparticle films have been deposited on Si(111) by electron-beam evaporation, a technique leading to hemispherically-shaped Ag clusters. Isolated Cu nanoparticles have been generated by prolonged heating of a polycrystalline Cu sample. If compared to the spectra of the corresponding homogeneous surfaces, the Cu and Ag nanoparticle spectra are characterized by a strongly enhanced total 2PPE yield (enhancement factor up to 70), by a shift (about 0.1 eV) of the Fermi level onset towards lower final state energies, by a reduction of the work function (typically by 0.2 eV) and by a much steeper increase of the 2PPE yield towards lower final state energies. The shift of the Fermi level onset in the nanoparticle spectra has been explained by a positive unit charge (localized photohole) residing on the particle during the time-scale relevant for the 2PPE process (few femtoseconds). The total 2PPE yield enhancement and the different overall shape of the spectra have been explained by considering that the laser frequency was close to the localized surface plasmon resonance of the Cu and Ag nanoparticles. The synchronous oscillations induced by the laser in the metal electrons enhance the near-zone (NZ) field, defined as the linear superposition of the laser field and the field produced in the vicinity of the particles by the forced charge oscillations. From the present measurements it is clear that the NZ field behavior is responsible for the 2PPE enhancement and affects the 2PPE spatial and energy distribution and its dynamics. In particular, its strong spatial dependence allows indirect transitions through real intermediate states to take place in the metal clusters. Such transitions are forbidden by momentum conservation arguments and are thus experimentally much less probable on homogeneous surfaces. Further, we investigated specially tailored moon-shaped small metal nanostructures, whose NZ field was theoretically predicted, and compared the calculation with the laterally resolved 2PPE signal. We could show that the 2PPE signal gives a clear fingerprint of the theoretically predicted spatial dependence of the NZ field. This potential of our method is highly attractive in the novel field of plasmonics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urease is a nickel-dependent enzyme that catalyzes hydrolysis of urea in the last step of organic nitrogen mineralization. Its active site contains a dinuclear center for Ni(II) ions that must be inserted into the apo-enzyme through the action of four accessory proteins (UreD, UreE, UreF, UreG) leading to activation of urease. UreE, acting as a metallo-chaperone, delivers Ni(II) to the preformed complex of apo-urease-UreDFG and has the capability to enhance the GTPase activity of UreG. This study, focused on characterization of UreE from Sporosarcina pasteurii (SpUreE), represents a piece of information on the structure/mobility-function relationships that control nickel binding by SpUreE and its interaction with SpUreG. A calorimetric analysis revealed the occurrence of a binding event between these proteins with positive cooperativity and a stoichiometry consistent with the formation of the (UreE)2-(UreG)2 hetero-oligomer complex. Chemical Shift Perturbations induced by the protein-protein interaction were analyzed using high-resolution NMR spectroscopy, which allowed to characterize the molecular details of the protein surface of SpUreE involved in the complex formation with SpUreG. Moreover, backbone dynamic properties of SpUreE, determined using 15N relaxation analysis, revealed a general mobility in the nanoseconds time-scale, with the fastest motions observed at the C-termini. The latter analysis made it possible for the first time to characterize of the C-terminal portions, known to contain key residues for metal ion binding, that were not observed in the crystal structure of UreE because of disorder. The residues belonging to this portion of SpUreE feature large CSPs upon addition of SpUreG, showing that their chemical environment is directly affected by protein-protein interaction. Metal ion selectivity and affinity of SpUreE for cognate Ni(II) and non cognate Zn(II) metal ions were determined, and the ability of the protein to select Ni(II) over Zn(II), in consistency with the proposed role in Ni(II) cations transport, was established.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed paleomagnetic study was carried out on biosiliceous and calcareous sediments drilled on Maud Rise, Antarctica, during ODP Leg 113. High-quality APC sections were retrieved in the upper 220 m of Holes 689B and 690B. Average deposition rates range from 3 to 15 m/m.y. A close (25 cm) paleomagnetic sample spacing provided a medium-resolution magnetostratigraphic sequence for the Paleogene and Neogene. Paleomagnetic samples were demagnetized stepwise by alternating fields, and characteristic remanent magnetization directions were derived from detailed vector and difference vector component analysis. A magnetochronologic framework has been established for the first time for the Southern Ocean sedimentary sequences spanning Paleocene to Oligocene and middle Miocene to early Pliocene times. Biosiliceous and calcareous microfossil stratigraphies were used to constrain magnetostratigraphic age assignments. Although average sedimentation rates were rather low, nearly complete sections of the geomagnetic polarity time scale (e.g., Chrons C5 and C5A) could be correlated with the inferred polarity pattern. Miocene and Pliocene records are marked by a high number of hiatuses mainly identified by diatom biostratigraphy. Good paleomagnetic correlation between the two holes is afforded in particular in the middle to upper Miocene. Oligocene magnetostratigraphy reveals a high-quality paleomagnetic record with a mostly complete Oligocene section in Hole 689B at ~5 m/m.y. deposition rate. Hole 690B exhibits higher deposition rates (7-12 m/m.y.), although two hiatuses are present. Early and late Eocene sedimentary sequences could be analyzed in both holes, but in Hole 689B middle Eocene chrons were disrupted by hiatuses and only incomplete polarity intervals C21 and C24 were encountered. Highest resolution (14 m/m.y.) was achieved in Hole 690B in a complete early Eocene and late Paleocene sequence from Chrons C23 to C26, with a number of short polarity intervals detected within Chrons C24 and C25.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetostratigraphy of Neogene sediments from Holes 762B and 763A are presented in this paper. Hole 762B contains 17 reversals. All reversals above the base of the Gilbert are correlated with the magnetic polarity time scale (Haq et al., 1988). Hole 763A yields a record of about 20 reversals that can be correlated to the magnetic polarity time scale, documenting all reversals to the base of Chron 4A. Based on the correlation, the sediment accumulation vs. time for Holes 762B and 763A are determined. The age-depth curves obtained show a similar pattern of sedimentation rate since 6.8 Ma. The study also indicates a correlation between the fluctuations in the magnetic parameters (natural remanent magnetization intensity and susceptibility), the lithologic changes, and changes in iron content at both holes. This correlation suggests that the natural remanent magnetization intensity and susceptibility changes observed in Holes 762B and 763A are controlled by changes in depositional processes probably associated with climatic variations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep Sea Drilling Project Site 577 on Shatsky Rise (North Pacific Ocean) recovered a series of cores at three holes that contain calcareous nannofossil ooze of latest Cretaceous (late Maastrichtian) through early Eocene age. Several important records have been generated using samples from these cores, but the stratigraphy has remained outdated and confusing. Here we revise the stratigraphy at Site 577. This includes refining several age datums, realigning cores in the depth domain, and placing all stratigraphic markers on a current time scale. The work provides a template for appropriately bringing latest Cretaceous and Paleogene data sets at old drill sites into current paleoceanographic literature for this time interval. While the Paleocene Eocene Thermal Maximum (PETM) lies within core gaps at Holes 577* and 577A, the sedimentary record at the site holds other important events and remains crucially relevant to understanding changes in oceanographic conditions from the latest Cretaceous through early Paleogene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pliocene and Miocene magnetostratigraphy from ODP Site 1218 (Equatorial Pacific) has been obtained by measurements made on u-channel samples, augmented by about 50 discrete samples. U-channel samples were measured at 1 cm intervals and stepwise demagnetized in alternating fields up to a maximum peak field of 80 mT. The component magnetization directions were determined by principal component analysis for demagnetization steps in the 20-60 mT peak field range. A relatively small number of discrete samples were subject to both thermal and alternating field (AF) demagnetization and gave results compatible with u-channel measurements. Magnetostratigraphy from u-channel samples are compared with shipboard data that were based on blanket demagnetization at peak AF fields of 20 mT. U-channel measurements add more detail to the magnetostratigraphic record and allow identification of thin polarity zones especially in the upper part of the section were the sedimentation rates are very low (~2 m/Myr). The component magnetization directions determined from u-channel measurements also gave more reliable and precise estimates of inclination (paleolatitude). The magnetostratigraphy from Site 1218 can be unambiguously correlated with the reference geomagnetic polarity time scale and gives a means of dating the sedimentary sequence. Both Miocene-Pliocene and Oligocene-Miocene stage boundaries were easily identified from the magnetostratigraphic record. Although calculation of paleomagnetic poles is hindered by the low precision of the cores' azimuthal orientation, the data from both u-channel and discrete samples allow determination of the paleolatitude of the Site through time with good precision. Paleomagnetic data indicate that the paleolatitude of Site 1218 has increased form nearly equatorial latitude in the Oligocene to its present-day latitude close to 9°N. Within the precision of the paleomagnetic data, this is in agreement with current predictions of plate motion models based on fixed hotspots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aims of this study are twofold. First, the study tries to provide the most reliable chronology possible for two critical sections by correlating the magnetic polarity stratigraphy measured in these sediments with a newly revised geomagnetic polarity time scale. Second, this study attempts to examine in detail the nature of seven short events not included in the shipboard standard time scale, but for which abundant magnetostratigraphic evidence was obtained during the Leg. Data presented here force some modifications of the shipboard interpretations of the magnetostratigraphy of Sites 845 and 844 on the basis of new data generated using discrete samples and from a greater appreciation of the magnetostratigraphic signature of Miocene-age short events. Those short events can be classified into two groups: those that probably reflect short, full-polarity intervals and those that more likely represent an interval of diminished geomagnetic intensity. Three of the seven events documented here correspond well with three subtle features, as seen in marine magnetic profiles, that have been newly included in the geomagnetic polarity time scale as short, full-polarity chrons. One of the seven events corresponds to a poorly defined feature of the marine magnetic record that has also been newly included in the geomagnetic polarity time scale, but which was considered of enigmatic origin. The three remaining events investigated here, although they have not been identified with features in the seafloor magnetic record, are suggested to be events of a similar nature, most likely times of anomalously low geomagnetic intensity. In addition to the Miocene magnetostratigraphic results given, several sets of averaged paleomagnetic inclinations are presented. Although these results clearly show the effects of a residual coring overprint, they demonstrate that paleomagnetic estimates of paleolatitudes can be made which are in good general agreement with ancient site positions calculated using hot spot-based plate reconstructions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic measurements were made on discrete samples from the Neogene pelagic and hemipelagic sediments recovered during ODP Leg 117. Polarity zones, usually identified for uppermost 200 m, were correlated to the geomagnetic polarity time scale referring to biostratigraphic datums. Quality and resolution of the magnetostratigraphy was partly limited by the weak and relatively soft magnetic character of almost all intervals, and core disturbance by gas expansion at some Oman Margin sites. Clear polarity records of the Brunhes and Matuyama chrons (C1 to C2r) were observed at Sites 724 and 727 on the Oman continental margin. Extended reversal records of the Pliocene were found at Site 722 on the Owen Ridge and Site 728 on the Oman Margin, and correlated to the Gauss to Gilbert chrons (C2A to C3).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apart from Site 650, core disturbance due to rotary drilling severely compromised the quality of the magnetostratigraphic data obtained from Leg 107 sediments. The correlation of polarity zones to the geomagnetic polarity time scale cannot be made solely on the basis of pattern fit. The proposed correlations are consistent between sites, and this consistency is constrained by the biostratigraphic datums. The resulting biomagnetostratigraphic correlations are reviewed in the synthesis section of this volume. The purpose of this paper is to document the magnetic stratigraphies, and present the preferred correlation to the geomagnetic reversal time scale. Four implications of the proposed correlations are: (1) The Mio-Pliocene boundary occurs in the lowest reversed interval of the Gilbert (Chron 3r) at about 4.9 Ma. (2) The thick pre-Pliocene lacustrine sequence recovered at Site 652 appears to have been deposited entirely within a single reversed polarity chron (Chron 3r). (3) The balatino-type gypsum recovered at Site 654 was also deposited entirely within this polarity chron (Chron 3r). (4) The Tortonian-Messinian boundary occurs within a normal polarity zone which is probably correlative to Chron 6 (Chron 3B) giving a boundary age of about 6.4 Ma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the average citizen and the public, "earthquake prediction" means "short-term prediction," a prediction of a specific earthquake on a relatively short time scale. Such prediction must specify the time, place, and magnitude of the earthquake in question with sufficiently high reliability. For this type of prediction, one must rely on some short-term precursors. Examinations of strain changes just before large earthquakes suggest that consistent detection of such precursory strain changes cannot be expected. Other precursory phenomena such as foreshocks and nonseismological anomalies do not occur consistently either. Thus, reliable short-term prediction would be very difficult. Although short-term predictions with large uncertainties could be useful for some areas if their social and economic environments can tolerate false alarms, such predictions would be impractical for most modern industrialized cities. A strategy for effective seismic hazard reduction is to take full advantage of the recent technical advancements in seismology, computers, and communication. In highly industrialized communities, rapid earthquake information is critically important for emergency services agencies, utilities, communications, financial companies, and media to make quick reports and damage estimates and to determine where emergency response is most needed. Long-term forecast, or prognosis, of earthquakes is important for development of realistic building codes, retrofitting existing structures, and land-use planning, but the distinction between short-term and long-term predictions needs to be clearly communicated to the public to avoid misunderstanding.