957 resultados para Redes neuronales artificiales - Arquitecturas


Relevância:

100.00% 100.00%

Publicador:

Resumo:

El objetivo principal de esta tesis doctoral es profundizar en el análisis y diseño de un sistema inteligente para la predicción y control del acabado superficial en un proceso de fresado a alta velocidad, basado fundamentalmente en clasificadores Bayesianos, con el prop´osito de desarrollar una metodolog´ıa que facilite el diseño de este tipo de sistemas. El sistema, cuyo propósito es posibilitar la predicción y control de la rugosidad superficial, se compone de un modelo aprendido a partir de datos experimentales con redes Bayesianas, que ayudar´a a comprender los procesos dinámicos involucrados en el mecanizado y las interacciones entre las variables relevantes. Dado que las redes neuronales artificiales son modelos ampliamente utilizados en procesos de corte de materiales, también se incluye un modelo para fresado usándolas, donde se introdujo la geometría y la dureza del material como variables novedosas hasta ahora no estudiadas en este contexto. Por lo tanto, una importante contribución en esta tesis son estos dos modelos para la predicción de la rugosidad superficial, que se comparan con respecto a diferentes aspectos: la influencia de las nuevas variables, los indicadores de evaluación del desempeño, interpretabilidad. Uno de los principales problemas en la modelización con clasificadores Bayesianos es la comprensión de las enormes tablas de probabilidad a posteriori producidas. Introducimos un m´etodo de explicación que genera un conjunto de reglas obtenidas de árboles de decisión. Estos árboles son inducidos a partir de un conjunto de datos simulados generados de las probabilidades a posteriori de la variable clase, calculadas con la red Bayesiana aprendida a partir de un conjunto de datos de entrenamiento. Por último, contribuimos en el campo multiobjetivo en el caso de que algunos de los objetivos no se puedan cuantificar en números reales, sino como funciones en intervalo de valores. Esto ocurre a menudo en aplicaciones de aprendizaje automático, especialmente las basadas en clasificación supervisada. En concreto, se extienden las ideas de dominancia y frontera de Pareto a esta situación. Su aplicación a los estudios de predicción de la rugosidad superficial en el caso de maximizar al mismo tiempo la sensibilidad y la especificidad del clasificador inducido de la red Bayesiana, y no solo maximizar la tasa de clasificación correcta. Los intervalos de estos dos objetivos provienen de un m´etodo de estimación honesta de ambos objetivos, como e.g. validación cruzada en k rodajas o bootstrap.---ABSTRACT---The main objective of this PhD Thesis is to go more deeply into the analysis and design of an intelligent system for surface roughness prediction and control in the end-milling machining process, based fundamentally on Bayesian network classifiers, with the aim of developing a methodology that makes easier the design of this type of systems. The system, whose purpose is to make possible the surface roughness prediction and control, consists of a model learnt from experimental data with the aid of Bayesian networks, that will help to understand the dynamic processes involved in the machining and the interactions among the relevant variables. Since artificial neural networks are models widely used in material cutting proceses, we include also an end-milling model using them, where the geometry and hardness of the piecework are introduced as novel variables not studied so far within this context. Thus, an important contribution in this thesis is these two models for surface roughness prediction, that are then compared with respecto to different aspects: influence of the new variables, performance evaluation metrics, interpretability. One of the main problems with Bayesian classifier-based modelling is the understanding of the enormous posterior probabilitiy tables produced. We introduce an explanation method that generates a set of rules obtained from decision trees. Such trees are induced from a simulated data set generated from the posterior probabilities of the class variable, calculated with the Bayesian network learned from a training data set. Finally, we contribute in the multi-objective field in the case that some of the objectives cannot be quantified as real numbers but as interval-valued functions. This often occurs in machine learning applications, especially those based on supervised classification. Specifically, the dominance and Pareto front ideas are extended to this setting. Its application to the surface roughness prediction studies the case of maximizing simultaneously the sensitivity and specificity of the induced Bayesian network classifier, rather than only maximizing the correct classification rate. Intervals in these two objectives come from a honest estimation method of both objectives, like e.g. k-fold cross-validation or bootstrap.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Una de las barreras para la aplicación de las técnicas de monitorización de la integridad estructural (SHM) basadas en ondas elásticas guiadas (GLW) en aeronaves es la influencia perniciosa de las condiciones ambientales y de operación (EOC). En esta tesis se ha estudiado dicha influencia y la compensación de la misma, particularizando en variaciones del estado de carga y temperatura. La compensación de dichos efectos se fundamenta en Redes Neuronales Artificiales (ANN) empleando datos experimentales procesados con la Transformada Chirplet. Los cambios en la geometría y en las propiedades del material respecto al estado inicial de la estructura (lo daños) provocan cambios en la forma de onda de las GLW (lo que denominamos característica sensible al daño o DSF). Mediante técnicas de tratamiento de señal se puede buscar una relación entre dichas variaciones y los daños, esto se conoce como SHM. Sin embargo, las variaciones en las EOC producen también cambios en los datos adquiridos relativos a las GLW (DSF) que provocan errores en los algoritmos de diagnóstico de daño (SHM). Esto sucede porque las firmas de daño y de las EOC en la DSF son del mismo orden. Por lo tanto, es necesario cuantificar y compensar el efecto de las EOC sobre la GLW. Si bien existen diversas metodologías para compensar los efectos de las EOC como por ejemplo “Optimal Baseline Selection” (OBS) o “Baseline Signal Stretching” (BSS), estas, se emplean exclusivamente en la compensación de los efectos térmicos. El método propuesto en esta tesis mezcla análisis de datos experimentales, como en el método OBS, y modelos basados en Redes Neuronales Artificiales (ANN) que reemplazan el modelado físico requerido por el método BSS. El análisis de datos experimentales consiste en aplicar la Transformada Chirplet (CT) para extraer la firma de las EOC sobre la DSF. Con esta información, obtenida bajo diversas EOC, se entrena una ANN. A continuación, la ANN actuará como un interpolador de referencias de la estructura sin daño, generando información de referencia para cualquier EOC. La comparación de las mediciones reales de la DSF con los valores simulados por la ANN, dará como resultado la firma daño en la DSF, lo que permite el diagnóstico de daño. Este esquema se ha aplicado y verificado, en diversas EOC, para una estructura unidimensional con un único camino de daño, y para una estructura representativa de un fuselaje de una aeronave, con curvatura y múltiples elementos rigidizadores, sometida a un estado de cargas complejo, con múltiples caminos de daños. Los efectos de las EOC se han estudiado en detalle en la estructura unidimensional y se han generalizado para el fuselaje, demostrando la independencia del método respecto a la configuración de la estructura y el tipo de sensores utilizados para la adquisición de datos GLW. Por otra parte, esta metodología se puede utilizar para la compensación simultánea de una variedad medible de EOC, que afecten a la adquisición de datos de la onda elástica guiada. El principal resultado entre otros, de esta tesis, es la metodología CT-ANN para la compensación de EOC en técnicas SHM basadas en ondas elásticas guiadas para el diagnóstico de daño. ABSTRACT One of the open problems to implement Structural Health Monitoring techniques based on elastic guided waves in real aircraft structures at operation is the influence of the environmental and operational conditions (EOC) on the damage diagnosis problem. This thesis deals with the compensation of these environmental and operational effects, specifically, the temperature and the external loading, by the use of the Chirplet Transform working with Artificial Neural Networks. It is well known that the guided elastic wave form is affected by the damage appearance (what is known as the damage sensitive feature or DSF). The DSF is modified by the temperature and by the load applied to the structure. The EOC promotes variations in the acquired data (DSF) and cause mistakes in damage diagnosis algorithms. This effect promotes changes on the waveform due to the EOC variations of the same order than the damage occurrence. It is difficult to separate both effects in order to avoid damage diagnosis mistakes. Therefore it is necessary to quantify and compensate the effect of EOC over the GLW forms. There are several approaches to compensate the EOC effects such as Optimal Baseline Selection (OBS) or Baseline Signal Stretching (BSS). Usually, they are used for temperature compensation. The new method proposed here mixes experimental data analysis, as in the OBS method, and Artificial Neural Network (ANN) models to replace the physical modelling which involves the BSS method. The experimental data analysis studied is based on apply the Chirplet Transform (CT) to extract the EOC signature on the DSF. The information obtained varying EOC is employed to train an ANN. Then, the ANN will act as a baselines interpolator of the undamaged structure. The ANN generates reference information at any EOC. By comparing real measurements of the DSF against the ANN simulated values, the damage signature appears clearly in the DSF, enabling an accurate damage diagnosis. This schema has been applied in a range of EOC for a one-dimensional structure containing single damage path and two dimensional real fuselage structure with stiffener elements and multiple damage paths. The EOC effects tested in the one-dimensional structure have been generalized to the fuselage showing its independence from structural arrangement and the type of sensors used for GLW data acquisition. Moreover, it can be used for the simultaneous compensation of a variety of measurable EOC, which affects the guided wave data acquisition. The main result, among others, of this thesis is the CT-ANN methodology for the compensation of EOC in GLW based SHM technique for damage diagnosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El desarrollo de nuevas estructuras aeroespaciales optimizadas, utilizan materiales compuestos, para los componentes críticos y subsistemas, principalmente polímeros reforzados con fibra de carbono (CFRP). Un conocimiento profundo del estado de daño por fatiga de estructuras de CFRP avanzado, es esencial para predecir la vida residual y optimizar los intervalos de inspección estructural, reparaciones y/o sustitución de componentes. Las técnicas actuales se basan principalmente en la medición de cargas estructurales a lo largo de la vida útil de la estructura mediante galgas extensométricas eléctricas. Con esos datos, se estima la vida a fatiga utilizando modelos de acumulación de daño. En la presente tesis, se evalúa la metodología convencional para la estimación de la vida a fatiga de un CFRP aeronáutico. Esta metodología está basada en la regla de acumulación de daño lineal de Palmgren-Miner, y es aplicada para determinar la vida a fatiga de estructuras sometidas a cargas de amplitud variable. Se ha realizado una campaña de ensayos con cargas de amplitud constante para caracterizar un CFRP aeronáutico a fatiga, obteniendo las curvas clásicas S-N, en diferentes relaciones de esfuerzo. Se determinaron los diagramas de vida constante, (CLD), también conocidos como diagramas de Goodman, utilizando redes neuronales artificiales debido a la ausencia de modelos coherentes para materiales compuestos. Se ha caracterizado la degradación de la rigidez debido al daño por fatiga. Se ha ensayado un segundo grupo de probetas con secuencias estandarizadas de cargas de amplitud variable, para obtener la vida a fatiga y la degradación de rigidez en condiciones realistas. Las cargas aplicadas son representativas de misiones de aviones de combate (Falstaff), y de aviones de transporte (Twist). La vida a fatiga de las probetas cicladas con cargas de amplitud variable, se comparó con el índice de daño teórico calculado en base a la regla de acumulación de daño lineal convencional. Los resultados obtenidos muestran predicciones no conservativas. Esta tesis también presenta el estudio y desarrollo, de una nueva técnica de no contacto para evaluar el estado de daño por fatiga de estructuras de CFRP por medio de cambios de los parámetros de rugosidad. La rugosidad superficial se puede medir fácilmente en campo con métodos sin contacto, mediante técnicas ópticas tales como speckle y perfilómetros ópticos. En el presente estudio, se han medido parámetros de rugosidad superficial, y el factor de irregularidad de la superficie, a lo largo de la vida de las probetas cicladas con cargas de amplitud constante y variable, Se ha obtenido una buena tendencia de ajuste al correlacionar la magnitud de la rugosidad y el factor de irregularidad de la superficie con la degradación de la rigidez de las probetas fatigadas. Estos resultados sugieren que los cambios en la rugosidad superficial medida en zonas estratégicas de componentes y estructuras hechas de CFRP, podrían ser indicativas del nivel de daño interno debido a cargas de fatiga. Los resultados también sugieren que el método es independiente del tipo de carga de fatiga que ha causado el daño. Esto último hace que esta técnica de medición sea aplicable como inspección para una amplia gama de estructuras de materiales compuestos, desde tanques presurizados con cargas de amplitud constante, estructuras aeronáuticas como alas y colas de aeronaves cicladas con cargas de amplitud variable, hasta aplicaciones industriales como automoción, entre otros. ABSTRACT New optimized aerospace structures use composite materials, mainly carbon fiber reinforced polymer composite (CFRP), for critical components and subsystems. A strong knowledge of the fatigue state of highly advanced (CFRP) structures is essential to predict the residual life and optimize intervals of structural inspection, repairs, and/or replacements. Current techniques are based mostly on measurement of structural loads throughout the service life by electric strain gauge sensors. These sensors are affected by extreme environmental conditions and by fatigue loads in such a way that the sensors and their systems require exhaustive maintenance throughout system life. In the present thesis, the conventional methodology based on linear damage accumulation rules, applied to determine the fatigue life of structures subjected to variable amplitude loads was evaluated for an aeronautical CFRP. A test program with constant amplitude loads has been performed to obtain the classical S-N curves at different stress ratios. Constant life diagrams, CLDs, where determined by means of Artificial Neural Networks due to the absence of consistent models for composites. The stiffness degradation due to fatigue damage has been characterized for coupons under cyclic tensile loads. A second group of coupons have been tested until failure with a standardized sequence of variable amplitude loads, representative of missions for combat aircraft (Falstaff), and representative of commercial flights (Twist), to obtain the fatigue life and the stiffness degradation under realistic conditions. The fatigue life of the coupons cycled with variable amplitude loads were compared to the theoretical damage index calculated based on the conventional linear damage accumulation rule. The obtained results show non-conservative predictions. This thesis also presents the evaluation of a new non-contact technique to evaluate the fatigue damage state of CFRP structures by means of measuring roughness parameters to evaluate changes in the surface topography. Surface roughness can be measured easily on field with non-contact methods by optical techniques such as speckle and optical perfilometers. In the present study, surface roughness parameters, and the surface irregularity factor, have been measured along the life of the coupons cycled with constant and variable amplitude loads of different magnitude. A good agreement has been obtained when correlating the magnitude of the roughness and the surface irregularity factor with the stiffness degradation. These results suggest that the changes on the surface roughness measured in strategic zones of components and structures made of CFRP, could be indicative of the level of internal damage due to fatigue loads. The results also suggest that the method is independent of the type of fatigue load that have caused the damage. It makes this measurement technique applicable for a wide range of inspections of composite materials structures, from pressurized tanks with constant amplitude loads, to variable amplitude loaded aeronautical structures like wings and empennages, up to automotive and other industrial applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los electrocardiogramas (ECG) registran la actividad eléctrica del corazón a través de doce señales principales denominadas derivaciones. Estas derivaciones son analizadas por expertos médicos observando aquellos segmentos de la señal eléctrica que determinan cada una de las patologías que pueden afectar al corazón. Este hecho en general, es un condicionante muy importante para el diseño de sistemas expertos de diagnóstico médico, ya que es preciso conocer, delimitar y extraer de la señal eléctrica aquellos segmentos que determinan la patología. Dar solución a estos problemas, sería fundamental para facilitar el diseño de sistemas expertos para el diagnóstico de enfermedades cardiacas. El objetivo de este trabajo es demostrar que es posible identificar patologías cardiacas analizando la señal completa de las diferentes derivaciones de los ECGs, y determinar puntos concretos que determinan la patología en lugar de segmentos de la señal. Para ello se ha utilizado una BBDD de electrocardiogramas y se ha determinado mediante un algoritmo, los puntos de la señal que determinan la patología. Se ha aplicado a la patología de bloqueos de rama y los puntos obtenidos con el algoritmo se han utilizado para el diseño de un clasificador automático basado en redes neuronales artificiales, obteniendo un coeficiente de sensibilidad del 100% y de especificad del 99.24%, demostrando su validez para el diseño de sistemas expertos de clasificación.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Las organizaciones y sus entornos son sistemas complejos. Tales sistemas son difíciles de comprender y predecir. Pese a ello, la predicción es una tarea fundamental para la gestión empresarial y para la toma de decisiones que implica siempre un riesgo. Los métodos clásicos de predicción (entre los cuales están: la regresión lineal, la Autoregresive Moving Average y el exponential smoothing) establecen supuestos como la linealidad, la estabilidad para ser matemática y computacionalmente tratables. Por diferentes medios, sin embargo, se han demostrado las limitaciones de tales métodos. Pues bien, en las últimas décadas nuevos métodos de predicción han surgido con el fin de abarcar la complejidad de los sistemas organizacionales y sus entornos, antes que evitarla. Entre ellos, los más promisorios son los métodos de predicción bio-inspirados (ej. redes neuronales, algoritmos genéticos /evolutivos y sistemas inmunes artificiales). Este artículo pretende establecer un estado situacional de las aplicaciones actuales y potenciales de los métodos bio-inspirados de predicción en la administración.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Desde el inicio de las organizaciones han existido modelos de control rígidos como los sistemas mecanicistas y formales en donde la perspectiva racional sobresale y no se tienen en cuenta los aspectos humanos en el diseño de los sistemas. Estos modelos de control rígidos, estandarizados y centralizados suponen un problema para el adecuado desarrollo estratégico y operativo de las organizaciones. Sin embargo, desde los sistemas biológicos se pueden observar aportes de autores que destacan la ausencia de control y su consecuente funcionamiento armónico a través de propiedades como la auto-organización y la emergencia. De esta forma, este artículo de revisión tiene como objetivo identificar las aproximaciones teóricas que se han realizado en torno a los principales aportes que los modelos biológicos han hecho a la gestión administrativa y específicamente al control organizacional mediante el análisis de la producción bibliográfica realizada en los últimos 10 años.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[ES] Análisis computacional de un modelo (además de su fenomenología emergente) de red asociativa tipo Hopfield que se ha modificado para de cabida a evidencias biológicas como es la del balanceado entre las neuronas excitadoras e inhibidoras en la corteza cerebral.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabajo propone una serie de algoritmos con el objetivo de extraer información de conjuntos de datos con redes de neuronas. Se estudian dichos algoritmos con redes de neuronas Enhenced Neural Networks (ENN), debido a que esta arquitectura tiene algunas ventajas cuando se aproximan funciones mediante redes neuronales. En la red ENN los pesos de la matriz principal varián con cada patrón, por lo que se comete un error menor en la aproximación. Las redes de neuronas ENN reúnen la información en los pesos de su red auxiliar, se propone un método para obtener información de la red a través de dichos pesos en formas de reglas y asignando un factor de certeza de dichas reglas. La red ENN obtiene un error cuadrático medio menor que el error teórico de una aproximación matemática por ejemplo mediante polinomios de Taylor. Se muestra como una red ENN, entrenada a partir un conjunto de patrones obtenido de una función de variables reales, sus pesos asociados tienen unas relaciones similares a las que se veri_can con las variables independientes con dicha función de variables reales. Las redes de neuronas ENN aproximan polinomios, se extrae conocimiento de un conjunto de datos de forma similar a la regresión estadística, resolviendo de forma más adecuada el problema de multicolionalidad en caso de existir. Las relaciones a partir de los pesos asociados de la matriz de la red auxiliar se obtienen similares a los coeficientes de una regresión para el mismo conjunto numérico. Una red ENN entrenada a partir de un conjunto de datos de una función boolena extrae el conocimiento a partir de los pesos asociados, y la influencia de las variables de la regla lógica de la función booleana, queda reejada en esos pesos asociados a la red auxiliar de la red ENN. Se plantea una red de base radial (RBF) para la clasificación y predicción en problemas forestales y agrícolas, obteniendo mejores resultados que con el modelo de regresión y otros métodos. Los resultados con una red RBF mejoran al método de regresión si existe colinealidad entre los datos que se dispone y no son muy numerosos. También se detecta que variables tienen más importancia en virtud de la variable pronóstico. Obteniendo el error cuadrático medio con redes RBF menor que con otros métodos, en particular que con el modelo de regresión. Abstract A series of algorithms is proposed in this study aiming at the goal of producing information about data groups with a neural network. These algorithms are studied with Enheced Neural Networks (ENN), owing to the fact that this structure shows sever advantages when the functions are approximated by neural networks. Main matrix weights in th ENN vary on each pattern; so, a smaller error is produced when approximating. The neural network ENN joins the weight information contained in their auxiliary network. Thus, a method to obtain information on the network through those weights is proposed by means of rules adding a certainty factor. The net ENN obtains a mean squared error smaller than the theorical one emerging from a mathematical aproximation such as, for example, by means of Taylor's polynomials. This study also shows how in a neural network ENN trained from a set of patterns obtained through a function of real variables, its associated weights have relationships similar to those ones tested by means of the independent variables connected with such functions of real variables. The neural network ENN approximates polynomials through it information about a set of data may be obtained in a similar way than through statistical regression, solving in this way possible problems of multicollinearity in a more suitable way. Relationships emerging from the associated weights in the auxiliary network matrix obtained are similar to the coeficients corresponding to a regression for the same numerical set. A net ENN trained from a boolean function data set obtains its information from its associated weights. The inuence of the variables of the boolean function logical rule are reected on those weights associated to the net auxiliar of the ENN. A radial basis neural networks (RBF) for the classification and prediction of forest and agricultural problems is proposed. This scheme obtains better results than the ones obtained by means of regression and other methods. The outputs with a net RBF better the regression method if the collineality with the available data and their amount is not very large. Detection of which variables are more important basing on the forecast variable can also be achieved, obtaining a mean squared error smaller that the ones obtained through other methods, in special the one produced by the regression pattern.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El objetivo del presente trabajo es el de presentar la situación actual de las posibles relaciones entre los comportamientos de las células lógicas, empleadas en Computación Óptica, y algunos comportamientos no lineales obtenidos en sistemas complejos. Como se mostrará, las arquitecturas empleadas en sistemas de cálculo, y más en concreto, las unidades básicas de que están compuestas, pueden dar lugar a situaciones no previstas de antemano y, como consecuencia, generar procesos ajenos a los inicialmente previstos. En concreto se mostrará como de una célula lógica, pueden obtenerse comportamientos caóticos. Este estudio se extenderá al análisis de redes neuronales biológicas y a su posible modelización con las anteriores técnicas. Como caso concreto de estudio se ofrecerá una simulación de la retina de los vertebrados, obtenida mediante las células lógicas presentadas anteriormente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En esta tesis se aborda la emergencia de sincronización en sistemas de osciladores acoplados. En particular, nos centraremos en la emergencia de un tipo de transición discontinua entre el estado incoherente y el estado síncrono, llamada transición explosiva. Este fenómeno es análogo al de las transiciones de fase de primer orden asociadas a los cambios de agregación de la materia, cuya importancia abarca diversos campos, desde la sincronización espontánea de redes neuronales al riesgo de desincronización súbita entre los osciladores que componen la red de suministro de potencia eléctrica. Para analizar el problema, se introducen varios métodos de creciente generalidad cuyo efecto es inducir una transición explosiva al imponer una serie condiciones sobre la topología y las frecuencias naturales de cada oscilador. Así mismo, se aborda el estudio de un modelo algo más complejo con características similares para entender en mayor profundidad las características asociadas a este tipo de transiciones, siendo la histéresis una de las más destacadas. Finalmente, se propone un método cuantitativo para describir la importancia de cada nodo en el proceso de sincronización con el objetivo de estudiar y caracterizar el efecto sobre los nodos del sistema de los diversos métodos que inducen una transición explosiva. Este nuevo enfoque permite descubrir un proceso de frustración de la sincronización local en redes de osciladores acoplados, siendo el responsable de la emergencia de la sincronización explosiva. ABSTRACT In this thesis we address the emergence of synchronization in systems of coupled oscillators in complex networks. We focus our attention on a particular kind of discontinuous transitions, named explosive synchronization, where the system changes abruptly from an incoherent state to a synchronous state. This emergent phenomena is analogous to those first order transitions typically associated with changes among the aggregate states of matter, and it is important in many different fields, such as spontaneous synchronization of neurons or spontaneous desynchronization in power grids. To analyze it, we introduce some methods of increasing generality in order to induce such a discontinuous transition by acting over the topology and the natural frequencies in several different ways. Likewise, we address the study of a more complex model in order to acquire deeper knowledge on the properties of this kind of transitions, where a hysteretic behavior is specially relevant. Finally, we propose a new quantitative approach in order to find the importance of each node in the route to synchronization, aiming to provide a characterization of the effects over the network’s units of the different methods able to induce an explosive transition. This approach allows us to show the inner mechanisms behind such explosive behavior in networks of coupled oscillators, being rooted by a frustration of the local synchronization process previous to the emergence of global coherence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La presente Tesis investiga el campo del reconocimiento automático de imágenes mediante ordenador aplicado al análisis de imágenes médicas en mamografía digital. Hay un interés por desarrollar sistemas de aprendizaje que asistan a los radiólogos en el reconocimiento de las microcalcificaciones para apoyarles en los programas de cribado y prevención del cáncer de mama. Para ello el análisis de las microcalcificaciones se ha revelado como técnica clave de diagnóstico precoz, pero sin embargo el diseño de sistemas automáticos para reconocerlas es complejo por la variabilidad y condiciones de las imágenes mamográficas. En este trabajo se analizan los planteamientos teóricos de diseño de sistemas de reconocimiento de imágenes, con énfasis en los problemas específicos de detección y clasificación de microcalcificaciones. Se ha realizado un estudio que incluye desde las técnicas de operadores morfológicos, redes neuronales, máquinas de vectores soporte, hasta las más recientes de aprendizaje profundo mediante redes neuronales convolucionales, contemplando la importancia de los conceptos de escala y jerarquía a la hora del diseño y sus implicaciones en la búsqueda de la arquitectura de conexiones y capas de la red. Con estos fundamentos teóricos y elementos de diseño procedentes de otros trabajos en este área realizados por el autor, se implementan tres sistemas de reconocimiento de mamografías que reflejan una evolución tecnológica, culminando en un sistema basado en Redes Neuronales Convolucionales (CNN) cuya arquitectura se diseña gracias al análisis teórico anterior y a los resultados prácticos de análisis de escalas llevados a cabo en nuestra base de datos de imágenes. Los tres sistemas se entrenan y validan con la base de datos de mamografías DDSM, con un total de 100 muestras de entrenamiento y 100 de prueba escogidas para evitar sesgos y reflejar fielmente un programa de cribado. La validez de las CNN para el problema que nos ocupa queda demostrada y se propone un camino de investigación para el diseño de su arquitectura. ABSTRACT This Dissertation investigates the field of computer image recognition applied to medical imaging in mammography. There is an interest in developing learning systems to assist radiologists in recognition of microcalcifications to help them in screening programs for prevention of breast cancer. Analysis of microcalcifications has emerged as a key technique for early diagnosis of breast cancer, but the design of automatic systems to recognize them is complicated by the variability and conditions of mammographic images. In this Thesis the theoretical approaches to design image recognition systems are discussed, with emphasis on the specific problems of detection and classification of microcalcifications. Our study includes techniques ranging from morphological operators, neural networks and support vector machines, to the most recent deep convolutional neural networks. We deal with learning theory by analyzing the importance of the concepts of scale and hierarchy at the design stage and its implications in the search for the architecture of connections and network layers. With these theoretical facts and design elements coming from other works in this area done by the author, three mammogram recognition systems which reflect technological developments are implemented, culminating in a system based on Convolutional Neural Networks (CNN), whose architecture is designed thanks to the previously mentioned theoretical study and practical results of analysis conducted on scales in our image database. All three systems are trained and validated against the DDSM mammographic database, with a total of 100 training samples and 100 test samples chosen to avoid bias and stand for a real screening program. The validity of the CNN approach to the problem is demonstrated and a research way to help in designing the architecture of these networks is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En la actualidad, cualquier compañía de telecomunicaciones que posea su propia red debe afrontar el problema del mantenimiento de la misma. Ofrecer un mínimo de calidad de servicio a sus clientes debe ser uno de sus objetivos principales. Esta calidad debe mantenerse aunque ocurran incidencias en la red. El presente trabajo pretende resolver el problema de priorizar el orden en que se restauran los cables, caminos y circuitos, dañados por una incidencia, dentro de una red troncal de transporte perteneciente a una operadora de telecomunicaciones. Tras un planteamiento detallado del problema y de todos los factores que influirán en la toma de decisión, en primer lugar se acomete una solución basada en Métodos Multicriterio Discretos, concretamente con el uso de ELECTRE I y AHP. A continuación se realiza una propuesta de solución basada en Redes Neuronales (con dos aproximaciones diferentes al problema). Por último se utiliza un método basado en la Optimización por Enjambre de Partículas (PSO), adaptado a un problema de permutación de enteros (ordenación), y con una forma particular de evaluar la mejor posición global del enjambre. Complementariamente se realiza una exposición de lo que es una empresa Operadora de telecomunicaciones, de sus departamentos y procesos internos, de los servicios que ofrece, de las redes sobre las que se soportan, y de los puntos clave a tener en cuenta en la implementación de sus sistemas informáticos de gestión integral. ABSTRACT: Nowadays, any telecommunications company that owns its own network must face the problem of maintaining it (service assurance). Provide a minimum quality of service to its customers must be one of its main objectives. This quality should be maintained although any incidents happen to occur in the network. This thesis aims to solve the problem of prioritizing the order in which the damaged cables, trails, path and circuits, within a backbone transport network, should be restored. This work begins with a detailed explanation about network maintenance issues and all the factors that influence decision-making problem. First of all, one solution based on Discrete Multicriteria methods is tried (ELECTRE I and AHP algorithms are used). Also, a solution based on neural networks (with two different approaches to the problem) is analyzed. Finally, this thesis proposes an algorithm based on Particle Swarm Optimization (PSO), adapted to a problem of integers permutation, and a particular way of evaluating the best overall position of the swarm method. In addition, there is included an exhibition about telecommunications companies, its departments, internal processes, services offered to clients, physical networks, and key points to consider when implementing its integrated management systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En el campo de la medicina clínica es crucial poder determinar la seguridad y la eficacia de los fármacos actuales y además acelerar el descubrimiento de nuevos compuestos activos. Para ello se llevan a cabo ensayos de laboratorio, que son métodos muy costosos y que requieren mucho tiempo. Sin embargo, la bioinformática puede facilitar enormemente la investigación clínica para los fines mencionados, ya que proporciona la predicción de la toxicidad de los fármacos y su actividad en enfermedades nuevas, así como la evolución de los compuestos activos descubiertos en ensayos clínicos. Esto se puede lograr gracias a la disponibilidad de herramientas de bioinformática y métodos de cribado virtual por ordenador (CV) que permitan probar todas las hipótesis necesarias antes de realizar los ensayos clínicos, tales como el docking estructural, mediante el programa BINDSURF. Sin embargo, la precisión de la mayoría de los métodos de CV se ve muy restringida a causa de las limitaciones presentes en las funciones de afinidad o scoring que describen las interacciones biomoleculares, e incluso hoy en día estas incertidumbres no se conocen completamente. En este trabajo abordamos este problema, proponiendo un nuevo enfoque en el que las redes neuronales se entrenan con información relativa a bases de datos de compuestos conocidos (proteínas diana y fármacos), y se aprovecha después el método para incrementar la precisión de las predicciones de afinidad del método de CV BINDSURF.