993 resultados para Quantum Computing
Resumo:
In recent years, reversible logic has emerged as one of the most important approaches for power optimization with its application in low power CMOS, nanotechnology and quantum computing. This research proposes quick addition of decimals (QAD) suitable for multi-digit BCD addition, using reversible conservative logic. The design makes use of reversible fault tolerant Fredkin gates only. The implementation strategy is to reduce the number of levels of delay there by increasing the speed, which is the most important factor for high speed circuits.
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This undergraduate thesis aims formally define aspects of Quantum Turing Machine using as a basis quantum finite automata. We introduce the basic concepts of quantum mechanics and quantum computing through principles such as superposition, entanglement of quantum states, quantum bits and algorithms. We demonstrate the Bell's teleportation theorem, enunciated in the form of Deutsch-Jozsa definition for quantum algorithms. The way as the overall text were written omits formal aspects of quantum mechanics, encouraging computer scientists to understand the framework of quantum computation. We conclude our thesis by listing the Quantum Turing Machine's main limitations regarding the well-known Classical Turing Machines
Resumo:
This undergraduate thesis aims formally define aspects of Quantum Turing Machine using as a basis quantum finite automata. We introduce the basic concepts of quantum mechanics and quantum computing through principles such as superposition, entanglement of quantum states, quantum bits and algorithms. We demonstrate the Bell's teleportation theorem, enunciated in the form of Deutsch-Jozsa definition for quantum algorithms. The way as the overall text were written omits formal aspects of quantum mechanics, encouraging computer scientists to understand the framework of quantum computation. We conclude our thesis by listing the Quantum Turing Machine's main limitations regarding the well-known Classical Turing Machines
Resumo:
In this thesis I present theoretical and experimental results concern- ing the operation and properties of a new kind of Penning trap, the planar trap. It consists of circular electrodes printed on an isolating surface, with an homogeneous magnetic field pointing perpendicular to that surface. The motivation of such geometry is to be found in the construction of an array of planar traps for quantum informa- tional purposes. The open access to radiation of this geometry, and the long coherence times expected for Penning traps, make the planar trap a good candidate for quantum computation. Several proposals for quantum 2-qubit interactions are studied and estimates for their rates are given. An expression for the electrostatic potential is presented, and its fea- tures exposed. A detailed study of the anharmonicity of the potential is given theoretically and is later demonstrated by experiment and numerical simulations, showing good agreement. Size scalability of this trap has been studied by replacing the original planar trap by a trap twice smaller in the experimental setup. This substitution shows no scale effect apart from those expected for the scaling of the parameters of the trap. A smaller lifetime for trapped electrons is seen for this smaller trap, but is clearly matched to a bigger misalignment of the trap’s surface and the magnetic field, due to its more difficult hand manipulation. I also give a hint that this trap may be of help in studying non-linear dynamics for a sextupolarly perturbed Penning trap.
Resumo:
In this thesis, elemental research towards the implantation of a diamond-based molecular quantum computer is presented. The approach followed requires linear alignment of endohedral fullerenes on the diamond C(100) surface in the vicinity of subsurface NV-centers. From this, four fundamental experimental challenges arise: 1) The well-controlled deposition of endohedral fullerenes on a diamond surface. 2) The creation of NV-centers in diamond close to the surface. 3) Preparation and characterization of atomically-flat diamondsurfaces. 4) Assembly of linear chains of endohedral fullerenes. First steps to overcome all these challenges were taken in the framework of this thesis. Therefore, a so-called “pulse injection” technique was implemented and tested in a UHV chamber that was custom-designed for this and further tasks. Pulse injection in principle allows for the deposition of molecules from solution onto a substrate and can therefore be used to deposit molecular species that are not stable to sublimation under UHV conditions, such as the endohedral fullerenes needed for a quantum register. Regarding the targeted creation of NV-centers, FIB experiments were carried out in cooperation with the group of Prof. Schmidt-Kaler (AG Quantum, Physics Department, Johannes Gutenberg-Universität Mainz). As an entry into this challenging task, argon cations were implanted into (111) surface-oriented CaF2 crystals. The resulting implantation spots on the surface were imaged and characterized using AFM. In this context, general relations between the impact of the ions on the surface and their valency or kinetic energy, respectively, could be established. The main part of this thesis, however, is constituted by NCAFM studies on both, bare and hydrogen-terminated diamond C(100) surfaces. In cooperation with the group of Prof. Dujardin (Molecular Nanoscience Group, ISMO, Université de Paris XI), clean and atomically-flat diamond surfaces were prepared by exposure of the substrate to a microwave hydrogen plasma. Subsequently, both surface modifications were imaged in high resolution with NC-AFM. In the process, both hydrogen atoms in the unit cell of the hydrogenated surface were resolved individually, which was not achieved in previous STM studies of this surface. The NC-AFM images also reveal, for the first time, atomic-resolution contrast on the clean, insulating diamond surface and provide real-space experimental evidence for a (2×1) surface reconstruction. With regard to the quantum computing concept, high-resolution NC-AFM imaging was also used to study the adsorption and self-assembly potential of two different kinds of fullerenes (C60 and C60F48) on aforementioned diamond surfaces. In case of the hydrogenated surface, particular attention was paid to the influence of charge transfer doping on the fullerene-substrate interaction and the morphology emerging from self-assembly. Finally, self-assembled C60 islands on the hydrogen-terminated diamond surface were subject to active manipulation by an NC-AFM tip. Two different kinds of tip-induced island growth modes have been induced and were presented. In conclusion, the results obtained provide fundamental informations mandatory for the realization of a molecular quantum computer. In the process it was shown that NC-AFM is, under proper circumstances, a very capable tool for imaging diamond surfaces with highest resolution, surpassing even what has been achieved with STM up to now. Particular attention was paid to the influence of transfer doping on the morphology of fullerenes on the hydrogenated diamond surface, revealing new possibilities for tailoring the self-assembly of molecules that have a high electron affinity.
Resumo:
The dissertation entitled "Tuning of magnetic exchange interactions between organic radicals through bond and space" comprises eight chapters. In the initial part of chapter 1, an overview of organic radicals and their applications were discussed and in the latter part motivation and objective of thesis was described. As the EPR spectroscopy is a necessary tool to study organic radicals, the basic principles of EPR spectroscopy were discussed in chapter 2. rnAntiferromagnetically coupled species can be considered as a source of interacting bosons. Consequently, such biradicals can serve as molecular models of a gas of magnetic excitations which can be used for quantum computing or quantum information processing. Notably, initial small triplet state population in weakly AF coupled biradicals can be switched into larger in the presence of applied magnetic field. Such biradical systems are promising molecular models for studying the phenomena of magnetic field-induced Bose-Einstein condensation in the solid state. To observe such phenomena it is very important to control the intra- as well as inter-molecular magnetic exchange interactions. Chapters 3 to 5 deals with the tuning of intra- and inter-molecular exchange interactions utilizing different approaches. Some of which include changing the length of π-spacer, introduction of functional groups, metal complex formation with diamagnetic metal ion, variation of radical moieties etc. During this study I came across two very interesting molecules 2,7-TMPNO and BPNO, which exist in semi-quinoid form and exhibits characteristic of the biradical and quinoid form simultaneously. The 2,7-TMPNO possesses the singlet-triplet energy gap of ΔEST = –1185 K. So it is nearly unrealistic to observe the magnetic field induced spin switching. So we studied the spin switching of this molecule by photo-excitation which was discussed in chapter 6. The structural similarity of BPNO with Tschitschibabin’s HC allowed us to dig the discrepancies related to ground state of Tschitschibabin’s hydrocarbon(Discussed in chapter 7). Finally, in chapter 8 the synthesis and characterization of a neutral paramagnetic HBC derivative (HBCNO) is discussed. The magneto liquid crystalline properties of HBCNO were studied by DSC and EPR spectroscopy.rn
Resumo:
Solitamente il concetto di difficoltà è piuttosto soggettivo, ma per un matematico questa parola ha un significato diverso: anche con l’aiuto dei più potenti computer può essere impossibile trovare la soluzione di un sudoku, risolvere l’enigma del commesso viaggiatore o scomporre un numero nei suoi fattori primi; in questo senso le classi di complessità computazionale quantificano il concetto di difficoltà secondo le leggi dell’informatica classica. Una macchina quantistica, però, non segue le leggi classiche e costituisce un nuovo punto di vista in una frontiera della ricerca legata alla risoluzione dei celebri problemi del millennio: gli algoritmi quantistici implementano le proprietà straordinarie e misteriose della teoria dei quanti che, quando applicate lucidamente, danno luogo a risultati sorprendenti.
Resumo:
Detection of a single nuclear spin constitutes an outstanding problem in different fields of physics such as quantum computing or magnetic imaging. Here we show that the energy levels of a single nuclear spin can be measured by means of inelastic electron tunneling spectroscopy (IETS). We consider two different systems, a magnetic adatom probed with scanning tunneling microscopy and a single Bi dopant in a silicon nanotransistor. We find that the hyperfine coupling opens new transport channels which can be resolved at experimentally accessible temperatures. Our simulations evince that IETS yields information about the occupations of the nuclear spin states, paving the way towards transport-detected single nuclear spin resonance.
Resumo:
Miniature slow light Surface Nanoscale Axial Photonics (SNAP) devices are reviewed. The fabrication precision of these devices is two orders of magnitude higher and the transmission losses are two orders of magnitude smaller than for any of the previously reported technologies for fabrication of miniature photonic circuits. In the first part of the report, a SNAP bottle resonator with a few nm high radius variation is demonstrated as the record small, slow light, and low loss 2.6 ns dispersionless delay line of 100 ps pulses. Next, a record small SNAP bottle resonator exhibiting the 20 ns/nm dispersion compensation of 100 ps pulses is demonstrated. In the second part of the report, the prospects of the SNAP technology in applications to telecommunications, optical signal processing, quantum computing, and microfluidics are discussed. © 2014 IEEE.
Resumo:
Optical nanofibres (ONFs) are very thin optical waveguides with sub-wavelength diameters. ONFs have very high evanescent fields and the guided light is confined strongly in the transverse direction. These fibres can be used to achieve strong light-matter interactions. Atoms around the waist of an ONF can be probed by collecting the atomic fluorescence coupling or by measuring the transmission (or the polarisation) of the probe beam sent through it. This thesis presents experiments using ONFs for probing and manipulating laser-cooled 87Rb atoms. As an initial experiment, a single mode ONF was integrated into a magneto-optical trap (MOT) and used for measuring the characteristics of the MOT, such as the loading time and the average temperature of the atom cloud. The effect of a near-resonant probe beam on the local temperature of the cold atoms has been studied. Next, the ONF was used for manipulating the atoms in the evanescent fields region in order to generate nonlinear optical effects. Four-wave mixing, ac Stark effect (Autler-Townes splitting) and electromagnetically induced transparency have been observed at unprecedented ultralow power levels. In another experiment, a few-mode ONF, supporting only the fundamental mode and the first higher order mode group, has been used for studying cold atoms. A higher pumping rate of the atomic fluorescence into the higher order fibreguided modes and more interactions with the surrounding atoms for higher order mode evanescent light, when compared to signals for the fundamental mode, have been identified. The results obtained in the thesis are particularly for a fundamental understanding of light-atom interactions when atoms are near a dielectric surface and also for the development of fibre-based quantum information technologies. Atoms coupled to ONFs could be used for preparing intrinsically fibre-coupled quantum nodes for quantum computing and the studies presented here are significant for a detailed understanding of such a system.
Resumo:
The introduction of electronically-active heteroanions into polyoxometalates (POMs) is one of the emerging topics in this field. The novel clusters have shown unprecedented intramolecular electron-transfer features that can be directly mediated by the incorporated heteroanions. In this thesis, we will focus on the study of phosphite (HPO32-) as new non-traditional heteroanions, discover HPO32- templated nanostructures, investigate their electronic behaviours as well as understand the self-assembly process of HPO32--templated species. The thesis starts with incorporating HPO32- into POM cages. The feasibility of this work was illustrated by the successful trapping of HPO32- into a “Trojan Horse” type {W18O56} nanocage. The reactivity of embedded {HPO3} was fully studied, showing the cluster undergoes a structural rearrangement in solution whereby the {HPO3} moieties dimerise to form a weakly interacting (O3PH···HPO3) moiety. In the crystalline state a temperature-dependent intramolecular redox reaction and structural rearrangement occurs. This rearrangement appears to proceed via an intermediate containing two different templates, a pyramidal {HPO3} and a tetrahedral {PO4} moiety. {HPO3} templated POM cages were then vigorously expanded and led to the isolation of five either fully oxidised or mixed-valence clusters trapped with mono-, di-, or tri- {HPO3}. Interestingly, an intriguing 3D honeycomb-like host-guest structure was also synthesised. The porous framework was self-aggregated by a tri-phopshite anion templated {W21} cluster with a {VO4} templated Wells-Dawson type {W18} acting as a guest species within the hexagonal channels. Based on this work, we further extended the templating anions to two different redox-active heteroanions, and discovered a unique mixed-heteroatom templated system built by pairing redox-active {HPIIIO3} with {TeO3}, {SeO3} or {AsO3}. Two molecular systems were developed, ie. “Trojan Horse” type [W18O56(HPO3)0.8(SeO3)1.2(H2O)2]8- and cross-shaped [H4P4X4W64O224]32-/36-, where X=TeIV, SeIV, AsIII. In the case of {W18(HPO3)0.8(SeO3)1.2}, the compound is found to be a mixture of heteroleptic {W18(HPO3)(SeO3)} and homoleptic {W18(SeO3)2} and {W18(HPO3)2}, identified by single crystal x-ray diffraction, NMR as well as high resolution mass spectrometry. The cluster exhibited similar temperature-dependent electronic features to “Trojan Horse” type {W18(HPO3)2O56}. However, due to the intrinsic reactivity difference between {HPO3} and {SeO3}, the thermal treatment leads to the formation of an unusual species [W18O55(PO4)(SeO3)]5-, in which {HPO3} was fully oxidised to {PO4} within the cage, whereas and lone-pair-containing {SeO3} heteroanions were kept intact inside the shell. This finding is extremely interesting, as it demonstrated that multiple and independent intramolecular electronic performance can be achieved by the coexistence of distinct heteroatoms within a single molecule. On the other hand, the cross-shaped [H4P4X4W64O224]32-/36- were constructed by four {W15(HPO3)(XO3)} building units linked by four {WO6} octahedra. Each building unit traps two different heteroatoms. It is interesting to note that the mixed heteroatom species show self-sorting, with a highly selective positional preference. Smaller ionic sized {HPO3} are self-organised into the uncapped side of {W15} cavity, whereas closed side are occupied by larger heteroatoms, which is surprisingly opposed to steric hindrance. Density functional theory (DFT) calculations are currently underway to have a full understanding of the preference of heteroatom substitutions. This series of clusters is of great interest in terms of achieving single molecule-based heteroatom-dependent multiple levels of electron transfer. It has opened a new way to design and synthesise POMs with higher diversity of electrical states, which may lead to a new type of Q-bits for quantum computing. The third chapter is focused on developing polyoxotungstate building blocks templated by {HPO3}. A series of building blocks, {W15O48(HPO3)2}, {W9O30(HPO3)} {W12O40(HPO3)2} and hexagonal {W6O18(HPO3)} have been obtained. The first four building blocks have been reported with {SeO3} and/or {TeO3} heteroanions. This result demonstrates {HPO3} has a similar reactivity as {SeO3} and {TeO3}, therefore studying the self-assembly of {HPO3}-based building blocks would be helpful to have a general understanding of pyramidal heteroatom-based molecular systems. The hexagonal {W6O18(HPO3)} is observed for the first time in polyoxotungstates, showing some of reactivity difference between {HPO3} and {SeO3} and {TeO3}. Furthermore, inorganic salts and pH values have some directing influence on the formation and transformation of various building blocks, resulting in the discovery of a family of {HPO3}-based clusters with nuclearity ranging from {W29} to {W106}. High resolution mass spectrometry was also carried out to investigate the cluster solution behaviour and also gain information of building block speciation. It is found that some clusters experienced decomposition, which gives rise to potential building blocks accountable for the self-assembly.
Resumo:
We show how the measurement induced model of quantum computation proposed by Raussendorf and Briegel ( 2001, Phys. Rev. Letts., 86, 5188) can be adapted to a nonlinear optical interaction. This optical implementation requires a Kerr nonlinearity, a single photon source, a single photon detector and fast feed forward. Although nondeterministic optical quantum information proposals such as that suggested by KLM ( 2001, Nature, 409, 46) do not require a Kerr nonlinearity they do require complex reconfigurable optical networks. The proposal in this paper has the benefit of a single static optical layout with fixed device parameters, where the algorithm is defined by the final measurement procedure.