989 resultados para Quantitative imaging
Resumo:
A dry matrix application for matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) was used to profile the distribution of 4-bromophenyl-1,4-diazabicyclo(3.2.2)nonane-4-carboxylate, monohydrochloride (BDNC, SSR180711) in rat brain tissue sections. Matrix application involved applying layers of finely ground dry alpha-cyano-4-hydroxycinnamic acid (CHCA) to the surface of tissue sections thaw mounted onto MALDI targets. It was not possible to detect the drug when applying matrix in a standard aqueous-organic solvent solution. The drug was detected at higher concentrations in specific regions of the brain, particularly the white matter of the cerebellum. Pseudomultiple reaction monitoring imaging was used to validate that the observed distribution was the target compound. The semiquantitative data obtained from signal intensities in the imaging was confirmed by laser microdissection of specific regions of the brain directed by the imaging, followed by hydrophilic interaction chromatography in combination with a quantitative high-resolution mass spectrometry method. This study illustrates that a dry matrix coating is a valuable and complementary matrix application method for analysis of small polar drugs and metabolites that can be used for semiquantitative analysis.
Resumo:
BACKGROUND: The purpose of the present study was to investigate the diagnostic value of T2-mapping in acute myocarditis (ACM) and to define cut-off values for edema detection. METHODS: Cardiovascular magnetic resonance (CMR) data of 31 patients with ACM were retrospectively analyzed. 30 healthy volunteers (HV) served as a control. Additionally to the routine CMR protocol, T2-mapping data were acquired at 1.5 T using a breathhold Gradient-Spin-Echo T2-mapping sequence in six short axis slices. T2-maps were segmented according to the 16-segments AHA-model and segmental T2 values as well as the segmental pixel-standard deviation (SD) were analyzed. RESULTS: Mean differences of global myocardial T2 or pixel-SD between HV and ACM patients were only small, lying in the normal range of HV. In contrast, variation of segmental T2 values and pixel-SD was much larger in ACM patients compared to HV. In random forests and multiple logistic regression analyses, the combination of the highest segmental T2 value within each patient (maxT2) and the mean absolute deviation (MAD) of log-transformed pixel-SD (madSD) over all 16 segments within each patient proved to be the best discriminators between HV and ACM patients with an AUC of 0.85 in ROC-analysis. In classification trees, a combined cut-off of 0.22 for madSD and of 68 ms for maxT2 resulted in 83% specificity and 81% sensitivity for detection of ACM. CONCLUSIONS: The proposed cut-off values for maxT2 and madSD in the setting of ACM allow edema detection with high sensitivity and specificity and therefore have the potential to overcome the hurdles of T2-mapping for its integration into clinical routine.
Resumo:
A method using the ring-oven technique for pre-concentration in filter paper discs and near infrared hyperspectral imaging is proposed to identify four detergent and dispersant additives, and to determine their concentration in gasoline. Different approaches were used to select the best image data processing in order to gather the relevant spectral information. This was attained by selecting the pixels of the region of interest (ROI), using a pre-calculated threshold value of the PCA scores arranged as histograms, to select the spectra set; summing up the selected spectra to achieve representativeness; and compensating for the superimposed filter paper spectral information, also supported by scores histograms for each individual sample. The best classification model was achieved using linear discriminant analysis and genetic algorithm (LDA/GA), whose correct classification rate in the external validation set was 92%. Previous classification of the type of additive present in the gasoline is necessary to define the PLS model required for its quantitative determination. Considering that two of the additives studied present high spectral similarity, a PLS regression model was constructed to predict their content in gasoline, while two additional models were used for the remaining additives. The results for the external validation of these regression models showed a mean percentage error of prediction varying from 5 to 15%.
Resumo:
Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample representativeness, and minimizing the effect of the presence of contaminants.
Resumo:
Purpose: To evaluate patellar kinematics of volunteers Without knee pain at rest and during isometric contraction in open- and closed-kinetic-chain exercises. Methods: Twenty individuals took part in this study. All were submitted to magnetic resonance imaging (MRI) during rest and voluntary isometric contraction (VIC) in the open anti closed kinetic chain at 15 degrees, 30 degrees, and 45 degrees of knee flexion. Through MRI and using medical e-film software, the following measurements were evaluated: sulcus angle, patellar-tilt angle, and bisect offset. The mixed-effects linear model was used for comparison between knee positions, between rest and isometric contractions, and between (he exercises. Results: Data analysis revealed that the sulcus angle decreased as knee flexion increased and revealed increases with isometric contractions in both the open and closed kinetic chain for all knee-flexion angles. The patellar-tilt angle decreased with isometric contractions in both the open and closed kinetic chain for every knee position. However, in the closed kinetic chain, patellar tilt increased significantly with the knee flexed at 15 degrees. The bisect offset increased with the knee flexed at 15 degrees during isometric contractions and decreased as knee flexion increased during both exercises. Conclusion: VIC in the last degrees of knee extension may compromise patellar dynamics. On the other hand, it is possible to favor patellar stability by performing muscle contractions with the knee flexed at 30 degrees and 45 degrees in either the open or closed kinetic chain.
Resumo:
Imaging Spectroscopy (IS) is a promising tool for studying soil properties in large spatial domains. Going from point to image spectrometry is not only a journey from micro to macro scales, but also a long stage where problems such as dealing with data having a low signal-to-noise level, contamination of the atmosphere, large data sets, the BRDF effect and more are often encountered. In this paper we provide an up-to-date overview of some of the case studies that have used IS technology for soil science applications. Besides a brief discussion on the advantages and disadvantages of IS for studying soils, the following cases are comprehensively discussed: soil degradation (salinity, erosion, and deposition), soil mapping and classification, soil genesis and formation, soil contamination, soil water content, and soil swelling. We review these case studies and suggest that the 15 data be provided to the end-users as real reflectance and not as raw data and with better signal-to-noise ratios than presently exist. This is because converting the raw data into reflectance is a complicated stage that requires experience, knowledge, and specific infrastructures not available to many users, whereas quantitative spectral models require good quality data. These limitations serve as a barrier that impedes potential end-users, inhibiting researchers from trying this technique for their needs. The paper ends with a general call to the soil science audience to extend the utilization of the IS technique, and it provides some ideas on how to propel this technology forward to enable its widespread adoption in order to achieve a breakthrough in the field of soil science and remote sensing. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Plant performance is, at least partly, linked to the location of roots with respect to soil structure features and the micro-environment surrounding roots. Measurements of root distributions from intact samples, using optical microscopy and field tracings have been partially successful but are imprecise and labour-intensive. Theoretically, X-ray computed micro-tomography represents an ideal solution for non-invasive imaging of plant roots and soil structure. However, before it becomes fast enough and affordable or easily accessible, there is still a need for a diagnostic tool to investigate root/soil interplay. Here, a method for detection of undisturbed plant roots and their immediate physical environment is presented. X-ray absorption and phase contrast imaging are combined to produce projection images of soil sections from which root distributions and soil structure can be analyzed. The clarity of roots on the X-ray film is sufficient to allow manual tracing on an acetate sheet fixed over the film. In its current version, the method suffers limitations mainly related to (i) the degree of subjectivity associated with manual tracing and (ii) the difficulty of separating live and dead roots. The method represents a simple and relatively inexpensive way to detect and quantify roots from intact samples and has scope for further improvements. In this paper, the main steps of the method, sampling, image acquisition and image processing are documented. The potential use of the method in an agronomic perspective is illustrated using surface and sub-surface soil samples from a controlled wheat trial. Quantitative characterization of root attributes, e.g. radius, length density, branching intensity and the complex interplay between roots and soil structure, is presented and discussed.
Resumo:
Off-resonance RF pre-saturation was used to obtain contrast in MRI images of polymer gel dosimeters irradiated to doses up to 50 Gy. Two different polymer gel dosimeters composed of 2-hydroxyethyl-acryl ate or methacrylic acid monomers mixed with N, N'-methylene-bisacrylamide (BIS), dispersed in an aqueous gelatin matrix were evaluated. Radiation-induced polymerization of the co-monomers generates a fast-relaxing insoluble polymer. Saturation of the polymer using off-resonance Gaussian RF pulses prior to a spin-echo read-out with a short echo time leads to contrast that is dependent on the absorbed dose. This contrast is attributed to magnetization transfer (MT) between free water and the polymer, and direct saturation of water was found to be negligible under the prevailing experimental conditions. The usefulness of MT imaging was assessed by computing the dose resolution obtained with this technique. We found a low value of dose resolution over a wide range of doses could be obtained with a single experiment. This is an advantage over multiple spin echo (MSE) experiments using a single echo spacing where an optimal dose resolution is achieved over only very limited ranges of doses. The results suggest MT imaging protocols may be developed into a useful tool for polymer gel dosimetry.
Resumo:
Objectives We sought to determine whether the quantitative assessment of myocardial fibrosis (MF), either by histopathology or by contrast-enhanced magnetic resonance imaging (ce-MRI), could help predict long-term survival after aortic valve replacement. Background Severe aortic valve disease is characterized by progressive accumulation of interstitial MF. Methods Fifty-four patients scheduled to undergo aortic valve replacement were examined by ce-MRI. Delayed-enhanced images were used for the quantitative assessment of MF. In addition, interstitial MF was quantified by histological analysis of myocardial samples obtained during open-heart surgery and stained with picrosirius red. The ce-MRI study was repeated 27 +/- 22 months after surgery to assess left ventricular functional improvement, and all patients were followed for 52 +/- 17 months to evaluate long-term survival. Results There was a good correlation between the amount of MF measured by histopathology and by ce-MRI (r = 0.69, p < 0.001). In addition, the amount of MF demonstrated a significant inverse correlation with the degree of left ventricular functional improvement after surgery (r = -0.42, p = 0.04 for histopathology; r = -0.47, p = 0.02 for ce-MRI). Kaplan-Meier analyses revealed that higher degrees of MF accumulation were associated with worse long-term survival (chi-square = 6.32, p = 0.01 for histopathology; chi-square = 5.85, p = 0.02 for ce-MRI). On multivariate Cox regression analyses, patient age and the amount of MF were found to be independent predictors of all-cause mortality. Conclusions The amount of MF, either by histopathology or by ce-MRI, is associated with the degree of left ventricular functional improvement and all-cause mortality late after aortic valve replacement in patients with severe aortic valve disease. (J Am Coll Cardiol 2010; 56: 278-87) (c) 2010 by the American College of Cardiology Foundation
Resumo:
Objective: To compare clinical evaluation, electrophysiological investigation and magnetic resonance findings in assessing the severity of idiopathic carpal tunnel syndrome. Patients and methods: Seventy-four patients with idiopathic carpal tunnel syndrome were prospectively recruited. Clinical evaluation included symptoms severity score and two-point discrimination, sensory and motor nerve conduction velocities were determined by electroneuromyography and imaging parameters were obtained after wrist magnetic resonance. The Wilcoxon test was used to define the differences between measurements of median nerve area. The Pearson and Spearman correlation tests were used to determine the relationships between all the measured parameters. Results: Cross-sectional area of median nerve was smaller at hamate level than at radio-ulnar joint and pisiform levels (p < 0.001). With exception of median nerve area at hamate level, there was a lower degree of correlation between MRI parameters and findings obtained by clinical assessments and electrophysiological measurements. The median nerve area at hamate level correlated negatively with duration of symptoms, two-point discrimination, symptoms severity score and positively with sensory nerve conduction velocity (P < 0.01). Conclusion: In patients with idiopathic carpal tunnel syndrome, median nerve area measured by wrist magnetic resonance at hamate level may be considered as a valuable indicator to grading the severity of disease. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Background: Real time myocardial contrast echocardiography (RTMCE) is an emerging imaging modality for assessing myocardial perfusion that allows for noninvasive quantification of regional myocardial blood flow (MBF). Aim: We sought to assess the value of qualitative analysis of myocardial perfusion and quantitative assessment of myocardial blood flow (MBF) by RTMCE for predicting regional function recovery in patients with ischemic heart disease who underwent coronary artery bypass grafting (CABG). Methods: Twenty-four patients with coronary disease and left ventricular systolic dysfunction (ejection fraction < 45%) underwent RTMCE before and 3 months after CABG. RTMCE was performed using continuous intravenous infusion of commercially available contrast agent with low mechanical index power modulation imaging. Viability was defined by qualitative assessment of myocardial perfusion as homogenous opacification at rest in >= 2 segments of anterior or >= 1 segment of posterior territory. Viability by quantitative assessment of MBF was determined by receiver-operating characteristics curve analysis. Results: Regional function recovery was observed in 74% of territories considered viable by qualitative analysis of myocardial perfusion and 40% of nonviable (P = 0.03). Sensitivity, specificity, positive and negative predictive values of qualitative RTMCE for detecting regional function recovery were 74%, 60%, 77%, and 56%, respectively. Cutoff value of MBF for predicting regional function recovery was 1.76 (AUC = 0.77; 95% CI = 0.62-0.92). MBF obtained by RTMCE had sensitivity of 91%, specificity of 50%, positive predictive value of 75%, and negative predictive value of 78%. Conclusion: Qualitative and quantitative RTMCE provide good accuracy for predicting regional function recovery after CABG. Determination of MBF increases the sensitivity for detecting hibernating myocardium. (Echocardiography 2011;28:342-349).
Resumo:
The aim of this work is to provide a quantitative method for analysis of the concentration of superparamagnetic iron oxide nanoparticles (SPION), determined by means of ferromagnetic resonance (FMR), with the nanoparticles coupled to a specific antibody (AC133), and thus to express the antigenic labeling evidence for the stem cells C D133(+). The FMR efficiency and sensitivity were proven adequate for detecting and quantifying the low amounts of iron content in the C D133(+) cells (similar to 6.16 x 10(5) pg in the volume of 2 mu l containing 4.5 x 1011 SPION). The quantitative method led to the result of 1.70 x 10(-13) mol of Fe (9.5 pg), or 7.0 x 10(6) nanoparticles per cell. For the quantification analysis via the FMR technique it was necessary to carry out a preliminary quantitative visualization of iron oxide-labeled cells in order to ensure that the nanoparticles coupled to the antibodies are indeed tied to the antigen at the stem cell surface and that the cellular morphology was conserved, as proof of the validity of this method. The quantitative analysis by means of FMR is necessary for determining the signal intensity for the study of molecular imaging by means of magnetic resonance imaging (MRI).
Resumo:
Aims We conducted a meta-analysis to evaluate the accuracy of quantitative stress myocardial contrast echocardiography (MCE) in coronary artery disease (CAD). Methods and results Database search was performed through January 2008. We included studies evaluating accuracy of quantitative stress MCE for detection of CAD compared with coronary angiography or single-photon emission computed tomography (SPECT) and measuring reserve parameters of A, beta, and A beta. Data from studies were verified and supplemented by the authors of each study. Using random effects meta-analysis, we estimated weighted mean difference (WMD), likelihood ratios (LRs), diagnostic odds ratios (DORs), and summary area under curve (AUC), all with 95% confidence interval (0). Of 1443 studies, 13 including 627 patients (age range, 38-75 years) and comparing MCE with angiography (n = 10), SPECT (n = 1), or both (n = 2) were eligible. WMD (95% CI) were significantly less in CAD group than no-CAD group: 0.12 (0.06-0.18) (P < 0.001), 1.38 (1.28-1.52) (P < 0.001), and 1.47 (1.18-1.76) (P < 0.001) for A, beta, and A beta reserves, respectively. Pooled LRs for positive test were 1.33 (1.13-1.57), 3.76 (2.43-5.80), and 3.64 (2.87-4.78) and LRs for negative test were 0.68 (0.55-0.83), 0.30 (0.24-0.38), and 0.27 (0.22-0.34) for A, beta, and A beta reserves, respectively. Pooled DORs were 2.09 (1.42-3.07), 15.11 (7.90-28.91), and 14.73 (9.61-22.57) and AUCs were 0.637 (0.594-0.677), 0.851 (0.828-0.872), and 0.859 (0.842-0.750) for A, beta, and A beta reserves, respectively. Conclusion Evidence supports the use of quantitative MCE as a non-invasive test for detection of CAD. Standardizing MCE quantification analysis and adherence to reporting standards for diagnostic tests could enhance the quality of evidence in this field.
Resumo:
Objectives To evaluate the presence of false flow three-dimensional (3D) power Doppler signals in `flow-free` models. Methods 3D power Doppler datasets were acquired from three different flow-free phantoms (muscle, air and water) with two different transducers and Virtual Organ Computer-aided AnaLysis was used to generate a sphere that was serially applied through the 3D dataset. The vascularization flow index was used to compare artifactual signals at different depths (from 0 to 6 cm) within the different phantoms and at different gain and pulse repetition frequency (PR F) settings. Results Artifactual Doppler signals were seen in all phantoms despite these being flow-free. The pattern was very similar and the degree of artifact appeared to be dependent on the gain and distance from the transducer. False signals were more evident in the far field and increased as the gain was increased, with false signals first appearing with a gain of 1 dB in the air and muscle phantoms. False signals were seen at a lower gain with the water phantom (-15 dB) and these were associated with vertical lines of Doppler artifact that were related to PRF, and disappeared when reflections were attenuated. Conclusions Artifactual Doppler signals are seen in flow-free phantoms and are related to the gain settings and the distance from the transducer. In the in-vivo situation, the lowest gain settings that allow the detection of blood flow and adequate definition of vessel architecture should be used, which invariably means using a setting near or below the middle of the range available. Additionally, observers should be aware of vertical lines when evaluating cystic or liquid-containing structures. Copyright (C) 2010 ISUOC. Published by John Wiley & Sons, Ltd.
Resumo:
Osteoarthritis (OA) is the most frequent form of arthritis, with major implications for individual and public health care without effective treatment available. The field of joint imaging, and particularly magnetic resonance (MR) imaging, has evolved rapidly owing to technical advances and the application of these to the field of clinical research. Cartilage imaging certainly is at the forefront of these developments. In this review, the different aspects of OA imaging and cartilage assessment, with an emphasis on recent advances, will be presented. The current role of radiography, including advances in the technology for joint space width assessment, will be discussed. The development of various MR imaging techniques capable of facilitating assessment of cartilage morphology and the methods for evaluating the biochemical composition of cartilage will be presented. Advances in quantitative morphologic cartilage assessment and semiquantitative whole-organ assessment will be reviewed. Although MR imaging is the most important modality in imaging of OA and cartilage, others such as ultrasonography play a complementary role that will be discussed briefly.