964 resultados para Proton exchange membrane (PEM)
Resumo:
The transfer of chloride ions into a low resistance anion exchange membrane (AEM) was investigated by cyclic voltammetry (CV) and electrochemical impedance spectra. In all cases, concentration polarization of Cl- ions is exterior to the membrane. It controls the flux and produces the limiting currents: either steady state or transient (peak type) current. In CV experiments, when the size of the holes in the membrane was much smaller than the distance between membrane holes, the Cl- anion transfer showed steady state voltammetric behavior. Each hole in the membrane can be regarded as a microelectrode and the membrane was equivalent to a microelectrode array in this condition. When the hole in the membrane was large or the distance between membrane holes was small, the CV curve of the Cl- anion transfer across the membrane showed a peak shape, which was attributed to linear diffusion. In AC impedance measurement, the impedance spectrum of the membrane system was composed of two semicircles at low DC bias, corresponding to the bulk characteristics of the membrane and the kinetic process of ion transfer, respectively. The bulk membrane resistance increases with increasing DC bias and only one semicircle was observed at higher DC bias. The parameters related to kinetic and membrane properties were discussed.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química, especialidade de Engenharia Bioquímica
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The control of a proton exchange membrane fuel cell system (PEM FC) for domestic heat and power supply requires extensive control measures to handle the complicated process. Highly dynamic and non linear behavior, increase drastically the difficulties to find the optimal design and control strategies. The objective is to design, implement and commission a controller for the entire fuel cell system. The fuel cell process and the control system are engineered simultaneously; therefore there is no access to the process hardware during the control system development. Therefore the method of choice was a model based design approach, following the rapid control prototyping (RCP) methodology. The fuel cell system is simulated using a fuel cell library which allowed thermodynamic calculations. In the course of the development the process model is continuously adapted to the real system. The controller application is designed and developed in parallel and thereby tested and verified against the process model. Furthermore, after the commissioning of the real system, the process model can be also better identified and parameterized utilizing measurement data to perform optimization procedures. The process model and the controller application are implemented in Simulink using Mathworks` Real Time Workshop (RTW) and the xPC development suite for MiL (model-in-theloop) and HiL (hardware-in-the-loop) testing. It is possible to completely develop, verify and validate the controller application without depending on the real fuel cell system, which is not available for testing during the development process. The fuel cell system can be immediately taken into operation after connecting the controller to the process.
Resumo:
Vinylphosphonic acid (VPA) was polymerized at 80 ºC by free radical polymerization to give polymers (PVPA) of different molecular weight depending on the initiator concentration. The highest molecular weight, Mw, achieved was 6.2 x 104 g/mol as determined by static light scattering. High resolution nuclear magnetic resonance (NMR) spectroscopy was used to gain microstructure information about the polymer chain. Information based on tetrad probabilities was utilized to deduce an almost atactic configuration. In addition, 13C-NMR gave evidence for the presence of head-head and tail-tail links. Refined analysis of the 1H NMR spectra allowed for the quantitative determination of the fraction of these links (23.5 percent of all links). Experimental evidence suggested that the polymerization proceeded via cyclopolymerization of the vinylphosphonic acid anhydride as an intermediate. Titration curves indicated that high molecular weight poly(vinylphosphonic acid) PVPA behaved as a monoprotic acid. Proton conductors with phosphonic acid moieties as protogenic groups are promising due to their high charge carrier concentration, thermal stability, and oxidation resistivity. Blends and copolymers of PVPA have already been reported, but PVPA has not been characterized sufficiently with respect to its polymer properties. Therefore, we also studied the proton conductivity behaviour of a well-characterized PVPA. PVPA is a conductor; however, the conductivity depends strongly on the water content of the material. The phosphonic acid functionality in the resulting polymer, PVPA, undergoes condensation leading to the formation of phosphonic anhydride groups at elevated temperature. Anhydride formation was found to be temperature dependent by solid state NMR. Anhydride formation affects the proton conductivity to a large extent because not only the number of charge carriers but also the mobility of the charge carriers seems to change.
Resumo:
Die vorliegende Dissertation befasst sich mit der Synthese, physikochemischen und polymerspezifischen Charakterisierung und insbesondere der impedanzspektroskopischen Untersuchung von sowohl neuartigen, solvensfreien lithiumionen- als auch protonenleitfähigen Polymermaterialien für potentielle Anwendungen in sekundären Lithiumionenbatterien bzw. in Hochtemperatur-Protonenaustauschmembran-Brennstoffzellen (engl.: proton exchange membrane fuel cell, auch: polymer electrolyte membrane fuel cell, PEMFC). Beiden Typen von ionenleitfähigen Membranen liegt das gängige Prinzip der chemischen Anbindung einer für den Ionentransport verantwortlichen Seitengruppe an eine geeignete Polymerhauptkette zugrunde („Entkopplung“; auch Immobilisierung), welcher hinsichtlich Glasübergangstemperatur (Tg), elektrochemischer und thermischer Stabilität (Td) eine dynamisch entkoppelte, aber nicht minder bedeutsame Rolle zukommt. Die Transportaktivierung erfolgt in beiden Fällen thermisch. Im Falle der Protonenleiter liegt die zusätzliche Intention darin, eine Alternative aufzuzeigen, in der die Polymerhauptkette gekoppelt direkt am Protonentransportmechanismus beteiligt ist, d.h., dass der translatorisch diffusive Ionentransport entlang der Hauptkette stattfindet und nicht zwischen benachbarten Seitenketten. Ein Hauptaugenmerk der Untersuchungen liegt sowohl bei den lithiumionen- als auch den protonenleitfähigen Polymermembranen auf temperaturabhängigen dynamischen Prozessen der jeweiligen Ionenspezies in der polymeren Matrix, was die Ionenleitfähigkeit selbst, Relaxationsphänomene, die translatorische Ionendiffusion und im Falle der Protonenleiter etwaige mesomere Grenzstrukturübergänge umfasst. Lithiumionenleiter: Poly(meth)acrylate mit (2-Oxo-1,3-dioxolan)resten (Cyclocarbonat-) in der Seitenkette unterschiedlicher Spacerlänge wurden synthetisiert und charakterisiert. Die Leitfähigkeit s(,T) erreicht bei Poly(2-oxo-[1,3]dioxolan-4-yl)methylacrylat (PDOA): Lithium-bis-trifluormethansulfonimid (LiTFSI) (10:3) ca. 10^-3,5 S cm^-1 bei 150 °C. Weichmachen (Dotieren) mit äquimolaren Mengen an Propylencarbonat (PC) bewirkt in allen Fällen einen enormen Anstieg der Leitfähigkeit. Die höchsten Leitfähigkeiten von Mischungen dieser Polymere mit LiTFSI (und LiBOB) werden nicht beim System mit der niedrigsten Tg gefunden. Auch dient Tg nicht als Referenztemperatur (Tref) nach Williams-Landel-Ferry (WLF), so dass eine WLF-Anpassung der Leitfähigkeitsdaten nur über einen modifizierten WLF-Algorithmus gelingt. Die ermittelten Tref liegen deutlich unterhalb von Tg bei Temperaturen, die charakteristisch für die Seitenkettenrelaxation sind („Einfrieren“). Dies legt nahe, dass der Relaxation der Seitenketten eine entscheidende Rolle im Li^+-Leitfähigkeitsmechanismus zukommt. Die Li^+-Überführungszahlen tLi^+ in diesen Systemen schwanken zwischen 0,13 (40 °C) und 0,55 (160 °C). Protonenleiter: Polymere mit Barbitursäure- bzw. Hypoxanthinresten in der Seitenkette und Polyalkylenbiguanide unterschiedlicher Spacerlänge wurden synthetisiert und charakterisiert. Die Leitfähigkeit s(,T) erreicht bei Poly(2,4,6(1H,3H,5H)-trioxopyrimidin-5-yl)methacrylat (PTPMA) maximal ca. 10^-4,4 S cm^-1 bei 140 °C. Höhere Leitfähigkeiten sind nur durch Mischen mit aprotischen Lösungsmitteln erreichbar. Die höchste Leitfähigkeit wird im Falle der Polyalkylenbiguanide bei Polyethylenbiguanid (PEB) erzielt. Sie erreicht 10^-2,4 S cm^-1 bei 190 °C. Die Aktivierungsenergien EA der Polyalkylenbiguanide liegen (jeweils unterhalb von Tg) zwischen ca. 3 – 6 kJ mol^-1. In allen beobachteten Fällen dient Tg als Tref, so dass eine konventionelle WLF-Behandlung möglich ist und davon auszugehen ist, dass die Leitfähigkeit mit dem freien Volumen Vf korreliert.
Resumo:
In dieser Arbeit werden zwei Arten von nicht-kovalent verknüpften Netzwerkstrukturen vorgestellt, die aus phosphonsäurehaltigen Molekülen aufgebaut sind. Einerseits sollen diese phosphonsäurehaltigen Moleküle als Protonenleiter in Brennstoffzellen eingesetzt werden. Dies ist durch die Möglichkeit des kooperativen Protonentransports in wasserstoffbrückenhaltigen Netzwerken begründet. Auf der anderen Seite sollen die phosphonsäurehaltigen Moleküle unter Einsatz von Metallkationen zur Darstellung ionischer Netzwerke verwendet werden. In diesem Fall fungieren die phosphonierten Moleküle als Linker in porösen organisch-anorganischen Hybridmaterialien, die sich beispielsweise zur Gasspeicherung eignen.rnEine Brennstoffzelle stellt Energie mit hoher Effizienz und geringer Umweltbelastung bereit. Das Herzstück der Brennstoffzelle ist die Elektrolytmembran, die auch als Separator oder Protonenaustauschmembran (PEM) bezeichnet wird. Es wird davon ausgegangen, daß der Schlüssel zur Weiterentwicklung der PEM-Brennstoffzellen in der Entwicklung von Elektrolyten liegt, die ausschließlich und effizient Protonen transportieren und darüber hinaus chemisch (oxidationsbeständig) und mechanisch stabil sind. Die mechanische Stabilität betrifft insbesondere den Betrieb der Brennstoffzelle bei hohen Temperaturen und niedriger relativer Feuchtigkeit. In dieser Arbeit wird ein neuartiger Ansatz zum Erreichen eines hohen Protonentransports im Festkörper vorgestellt, der auf dem Einsatz kleiner Moleküle beruht, die durch Selbstorganisation eine kontinuierliche protonenleitende Phase erzeugen. Bis jetzt stellt Hexakis(p-phosphonatophenyl)benzol das erste Beispiel eines kristallinen Protonenleiters dar, der im festen Zustand eine hohe und konstante Leistung zeigt. Die Modifizierung von Hexakis(p-phosphonatophenyl)benzol, entweder durch Änderung von para- zu meta-Substitution oder die Einführung von Alkylketten, führt zu Verbindungen geringerer Kristallinität und niedriger Protonenleitfähigkeit.rnIm zweiten Teil der Arbeit wurde 1,3,5-Tris(p-phosphonatophenyl)benzol als Linker in der Synthese von offenen Phosphonat-Netzwerken eingesetzt. Es bilden sich aufgrund der ionischen Wechselwirkung zwischen den positiv geladenen Metallkationen und den negativ geladenen Phosphonsäuregruppen hochstabile Feststoffe. Eines der wichtigsten Ergebnisse dieser Arbeit besteht darin, daß 1,3,5-Tris(p-phosphonatophenyl)benzol als Linker zum Aufbau poröser Hybridmaterialien eingesetzt werden kann. Zum ersten Mal wurde ein dreifach phosphoniertes organisches Molekül zum Aufbau mikroporöser offener Phosphonat-Netzwerke verwendet. Zudem konnte gezeigt werden, daß die Porosität mit dem Wachstumsmechanismus dieser Materialien zusammenhängt. Es ist nur dann möglich ein gleichfalls mikroporöses und kristallines ionisches Netzwerk auf der Grundlage phosphonierter Moleküle zu erhalten, wenn Linker und Konnektor die gleiche Geometrie und Funktionalität besitzen.rn
Resumo:
Desirable nitrogen (N) management practices for turfgrass supply sufficient N for high quality turf while limiting excess soil N. Previous studies suggested the potential of anion exchange membranes (AEMs) for predicting turfgrass color, quality, or yield. However, these studies suggested a wide range of critical soil nitrate-nitrogen (NO3-N) values across sample dates. A field experiment, in randomized complete block design with treatments consisting of nine N application rates, was conducted on a mixed species cool-season turfgrass lawn across two growing seasons. Every 2 wk from May to October, turfgrass color was assessed with three different reflectance meters, and soil NO3-N was measured with in situ AEMs. Cate-Nelson models were developed comparing relative reflectance value and yield to AEM desorbed soil NO3-N pooled across all sample dates. These models predicted critical AEM soil NO3-N values from 0. 45 to 1.4 micro g cm-2 d-1. Turf had a low probability of further positive response to AEM soil NO3-N greater than these critical values. These results suggest that soil NO3-N critical values from AEMs may be applicable across sample dates and years and may serve to guide N fertilization to limit excess soil NO3-N.
Resumo:
Este trabajo presenta un estudio sobre el funcionamiento y aplicaciones de las células de combustible de membrana tipo PEM, o de intercambio de protones, alimentadas con hidrógeno puro y oxigeno obtenido de aire comprimido. Una vez evaluado el proceso de dichas células y las variables que intervienen en el mismo, como presión, humedad y temperatura, se presenta una variedad de métodos para la instrumentación de tales variables así como métodos y sistemas para la estabilidad y control de las mismas, en torno a los valores óptimos para una mayor eficacia en el proceso. Tomando como variable principal a controlar la temperatura del proceso, y exponiendo los valores concretos en torno a 80 grados centígrados entre los que debe situarse, es realizado un modelo del proceso de calentamiento y evolución de la temperatura en función de la potencia del calentador resistivo en el dominio de la frecuencia compleja, y a su vez implementado un sistema de medición mediante sensores termopar de tipo K de respuesta casi lineal. La señal medida por los sensores es amplificada de manera diferencial mediante amplificadores de instrumentación INA2126, y es desarrollado un algoritmo de corrección de error de unión fría (error producido por la inclusión de nuevos metales del conector en el efecto termopar). Son incluidos los datos de test referentes al sistema de medición de temperatura , incluyendo las desviaciones o error respecto a los valores ideales de medida. Para la adquisición de datos y implementación de algoritmos de control, es utilizado un PC con el software Labview de National Instruments, que permite una programación intuitiva, versátil y visual, y poder realizar interfaces de usuario gráficas simples. La conexión entre el hardware de instrumentación y control de la célula y el PC se realiza mediante un interface de adquisición de datos USB NI 6800 que cuenta con un amplio número de salidas y entradas analógicas. Una vez digitalizadas las muestras de la señal medida, y corregido el error de unión fría anteriormente apuntado, es implementado en dicho software un controlador de tipo PID ( proporcional-integral-derivativo) , que se presenta como uno de los métodos más adecuados por su simplicidad de programación y su eficacia para el control de este tipo de variables. Para la evaluación del comportamiento del sistema son expuestas simulaciones mediante el software Matlab y Simulink determinando por tanto las mejores estrategias para desarrollar el control PID, así como los posibles resultados del proceso. En cuanto al sistema de calentamiento de los fluidos, es empleado un elemento resistor calentador, cuya potencia es controlada mediante un circuito electrónico compuesto por un detector de cruce por cero de la onda AC de alimentación y un sistema formado por un elemento TRIAC y su circuito de accionamiento. De manera análoga se expone el sistema de instrumentación para la presión de los gases en el circuito, variable que oscila en valores próximos a 3 atmosferas, para ello es empleado un sensor de presión con salida en corriente mediante bucle 4-20 mA, y un convertidor simple corriente a tensión para la entrada al sistema de adquisición de datos. Consecuentemente se presenta el esquema y componentes necesarios para la canalización, calentamiento y humidificación de los gases empleados en el proceso así como la situación de los sensores y actuadores. Por último el trabajo expone la relación de algoritmos desarrollados y un apéndice con información relativa al software Labview. ABTRACT This document presents a study about the operation and applications of PEM fuel cells (Proton exchange membrane fuel cells), fed with pure hydrogen and oxygen obtained from compressed air. Having evaluated the process of these cells and the variables involved on it, such as pressure, humidity and temperature, there is a variety of methods for implementing their control and to set up them around optimal values for greater efficiency in the process. Taking as primary process variable the temperature, and exposing its correct values around 80 degrees centigrade, between which must be placed, is carried out a model of the heating process and the temperature evolution related with the resistive heater power on the complex frequency domain, and is implemented a measuring system with thermocouple sensor type K performing a almost linear response. The differential signal measured by the sensor is amplified through INA2126 instrumentation amplifiers, and is developed a cold junction error correction algorithm (error produced by the inclusion of additional metals of connectors on the thermocouple effect). Data from the test concerning the temperature measurement system are included , including deviations or error regarding the ideal values of measurement. For data acquisition and implementation of control algorithms, is used a PC with LabVIEW software from National Instruments, which makes programming intuitive, versatile, visual, and useful to perform simple user interfaces. The connection between the instrumentation and control hardware of the cell and the PC interface is via a USB data acquisition NI 6800 that has a large number of analog inputs and outputs. Once stored the samples of the measured signal, and correct the error noted above junction, is implemented a software controller PID (proportional-integral-derivative), which is presented as one of the best methods for their programming simplicity and effectiveness for the control of such variables. To evaluate the performance of the system are presented simulations using Matlab and Simulink software thereby determining the best strategies to develop PID control, and possible outcomes of the process. As fluid heating system, is employed a heater resistor element whose power is controlled by an electronic circuit comprising a zero crossing detector of the AC power wave and a system consisting of a Triac and its drive circuit. As made with temperature variable it is developed an instrumentation system for gas pressure in the circuit, variable ranging in values around 3 atmospheres, it is employed a pressure sensor with a current output via 4-20 mA loop, and a single current to voltage converter to adequate the input to the data acquisition system. Consequently is developed the scheme and components needed for circulation, heating and humidification of the gases used in the process as well as the location of sensors and actuators. Finally the document presents the list of algorithms and an appendix with information about Labview software.
Resumo:
The purpose of this research is to investigate potential methods to produce an ion-exchange membrane that can be integrated directly into a polydimethylsiloxane Lab-on-a-Chip or Micro-Total-Analysis-System. The majority of microfluidic membranes are based on creating microporous structures, because it allows flexibility in the choice of material such that it can match the material of the microfluidic chip. This cohesion between the material of the microfluidic chip and membrane is an important feature to prevent bonding difficulties which can lead to leaking and other practical problems. However, of the materials commonly used to manufacture microfluidic chips, there are none that provide the ion-exchange capability. The DuPont product Nafion{TM} is chosen as the ion-exchange membrane, a copolymer with high conductivity and selectivity to cations and suitable for many applications such as electrolysis of water and the chlor-alkali process. The use of such an ion-exchange membrane in microfluidics could have multiple advantages, but there is no reversible/irreversible bonding that occurs between PDMS and Nafion{TM}. In this project multiple methods of physical entrapment of the ion-exchange material inside a film of PDMS are attempted. Through the use of the inherent properties of PDMS, very inexpensive sugar granulate can be used to make an inexpensive membrane mould which does not interfere with the PDMS crosslinking process. After dissolving away this sacrificial mould material, Nafion{TM} is solidified in the irregular granulate holes. Nafion{TM} in this membrane is confined in the irregular shape of the PDMS openings. The outer structure of the membrane is all PDMS and can be attached easily and securely to any PDMS-based microfluidic device through reversible or irreversible PDMS/PDMS bonding. Through impedance measurement, the effectiveness of these integrated membranes are compared against plain Nafion{TM} films in simple sodium chloride solutions.
Resumo:
Face à la diminution des ressources énergétiques et à l’augmentation de la pollution des énergies fossiles, de très nombreuses recherches sont actuellement menées pour produire de l’énergie propre et durable et pour réduire l’utilisation des sources d’énergies fossiles caractérisées par leur production intrinsèque des gaz à effet de serre. La pile à combustible à membrane échangeuse de protons (PEMFC) est une technologie qui prend de plus en plus d’ampleur pour produire l’énergie qui s’inscrit dans un contexte de développement durable. La PEMFC est un dispositif électrochimique qui fonctionne selon le principe inverse de l’électrolyse de l’eau. Elle convertit l’énergie de la réaction chimique entre l’hydrogène et l’oxygène (ou l’air) en puissance électrique, chaleur et eau; son seul rejet dans l’atmosphère est de la vapeur d’eau. Une pile de type PEMFC est constituée d’un empilement Électrode-Membrane-Électrode (EME) où la membrane consiste en un électrolyte polymère solide séparant les deux électrodes (l’anode et la cathode). Cet ensemble est intégré entre deux plaques bipolaires (BP) qui permettent de collecter le courant électrique et de distribuer les gaz grâce à des chemins de circulation gravés sur chacune de ses deux faces. La plupart des recherches focalisent sur la PEMFC afin d’améliorer ses performances électriques et sa durabilité et aussi de réduire son coût de production. Ces recherches portent sur le développement et la caractérisation des divers éléments de ce type de pile; y compris les éléments les plus coûteux et les plus massifs, tels que les plaques bipolaires. La conception de ces plaques doit tenir compte de plusieurs paramètres : elles doivent posséder une bonne perméabilité aux gaz et doivent combiner les propriétés de résistance mécanique, de stabilité chimique et thermique ainsi qu’une conductivité électrique élevée. Elles doivent aussi permettre d’évacuer adéquatement la chaleur générée dans le cœur de la cellule. Les plaques bipolaires métalliques sont pénalisées par leur faible résistance à la corrosion et celles en graphite sont fragiles et leur coût de fabrication est élevé (dû aux phases d’usinage des canaux de cheminement des gaz). C’est pourquoi de nombreuses recherches sont orientées vers le développement d’un nouveau concept de plaques bipolaires. La voie la plus prometteuse est de remplacer les matériaux métalliques et le graphite par des composites à matrice polymère. Les plaques bipolaires composites apparaissent attrayantes en raison de leur facilité de mise en œuvre et leur faible coût de production mais nécessitent une amélioration de leurs propriétés électriques et mécaniques, d’où l’objectif principal de cette thèse dans laquelle on propose: i) un matériau nanocomposite développé par extrusion bi-vis qui est à base de polymères chargés d’additifs solides conducteurs, incluant des nanotubes de carbone. ii) fabriquer un prototype de plaque bipolaire à partir de ces matériaux en utilisant le procédé de compression à chaud avec un refroidissement contrôlé. Dans ce projet, deux polymères thermoplastiques ont été utilisés, le polyfluorure de vinylidène (PVDF) et le polyéthylène téréphtalate (PET). Les charges électriquement conductrices sélectionnées sont: le noir de carbone, le graphite et les nanotubes de carbones. La combinaison de ces charges conductrices a été aussi étudiée visant à obtenir des formulations optimisées. La conductivité électrique à travers l’épaisseur des échantillons développés ainsi que leurs propriétés mécaniques ont été soigneusement caractérisées. Les résultats ont montré que non seulement la combinaison entre les charges conductrices influence les propriétés électriques et mécaniques des prototypes développés, mais aussi la distribution de ces charges (qui de son côté dépend de leur nature, leur taille et leurs propriétés de surface), avait aidé à améliorer les propriétés visées. Il a été observé que le traitement de surface des nanotubes de carbone avait aidé à l’amélioration de la conductivité électrique et la résistance mécanique des prototypes. Le taux de cristallinité généré durant le procédé de moulage par compression des prototypes de plaques bipolaires ainsi que la cinétique de cristallisation jouent un rôle important pour l’optimisation des propriétés électriques et mécaniques visées.