Développement et caractérisation de nouveaux nanocomposites polymères électriquement conductueurs pour plaques bipolaires de piles à combustible à membrane échangeuse de protons, PEMFC


Autoria(s): Athmouni, Nafaa
Contribuinte(s)

Mighri, Frej

Elkoun, Said

Data(s)

01/05/2016

Resumo

Face à la diminution des ressources énergétiques et à l’augmentation de la pollution des énergies fossiles, de très nombreuses recherches sont actuellement menées pour produire de l’énergie propre et durable et pour réduire l’utilisation des sources d’énergies fossiles caractérisées par leur production intrinsèque des gaz à effet de serre. La pile à combustible à membrane échangeuse de protons (PEMFC) est une technologie qui prend de plus en plus d’ampleur pour produire l’énergie qui s’inscrit dans un contexte de développement durable. La PEMFC est un dispositif électrochimique qui fonctionne selon le principe inverse de l’électrolyse de l’eau. Elle convertit l’énergie de la réaction chimique entre l’hydrogène et l’oxygène (ou l’air) en puissance électrique, chaleur et eau; son seul rejet dans l’atmosphère est de la vapeur d’eau. Une pile de type PEMFC est constituée d’un empilement Électrode-Membrane-Électrode (EME) où la membrane consiste en un électrolyte polymère solide séparant les deux électrodes (l’anode et la cathode). Cet ensemble est intégré entre deux plaques bipolaires (BP) qui permettent de collecter le courant électrique et de distribuer les gaz grâce à des chemins de circulation gravés sur chacune de ses deux faces. La plupart des recherches focalisent sur la PEMFC afin d’améliorer ses performances électriques et sa durabilité et aussi de réduire son coût de production. Ces recherches portent sur le développement et la caractérisation des divers éléments de ce type de pile; y compris les éléments les plus coûteux et les plus massifs, tels que les plaques bipolaires. La conception de ces plaques doit tenir compte de plusieurs paramètres : elles doivent posséder une bonne perméabilité aux gaz et doivent combiner les propriétés de résistance mécanique, de stabilité chimique et thermique ainsi qu’une conductivité électrique élevée. Elles doivent aussi permettre d’évacuer adéquatement la chaleur générée dans le cœur de la cellule. Les plaques bipolaires métalliques sont pénalisées par leur faible résistance à la corrosion et celles en graphite sont fragiles et leur coût de fabrication est élevé (dû aux phases d’usinage des canaux de cheminement des gaz). C’est pourquoi de nombreuses recherches sont orientées vers le développement d’un nouveau concept de plaques bipolaires. La voie la plus prometteuse est de remplacer les matériaux métalliques et le graphite par des composites à matrice polymère. Les plaques bipolaires composites apparaissent attrayantes en raison de leur facilité de mise en œuvre et leur faible coût de production mais nécessitent une amélioration de leurs propriétés électriques et mécaniques, d’où l’objectif principal de cette thèse dans laquelle on propose: i) un matériau nanocomposite développé par extrusion bi-vis qui est à base de polymères chargés d’additifs solides conducteurs, incluant des nanotubes de carbone. ii) fabriquer un prototype de plaque bipolaire à partir de ces matériaux en utilisant le procédé de compression à chaud avec un refroidissement contrôlé. Dans ce projet, deux polymères thermoplastiques ont été utilisés, le polyfluorure de vinylidène (PVDF) et le polyéthylène téréphtalate (PET). Les charges électriquement conductrices sélectionnées sont: le noir de carbone, le graphite et les nanotubes de carbones. La combinaison de ces charges conductrices a été aussi étudiée visant à obtenir des formulations optimisées. La conductivité électrique à travers l’épaisseur des échantillons développés ainsi que leurs propriétés mécaniques ont été soigneusement caractérisées. Les résultats ont montré que non seulement la combinaison entre les charges conductrices influence les propriétés électriques et mécaniques des prototypes développés, mais aussi la distribution de ces charges (qui de son côté dépend de leur nature, leur taille et leurs propriétés de surface), avait aidé à améliorer les propriétés visées. Il a été observé que le traitement de surface des nanotubes de carbone avait aidé à l’amélioration de la conductivité électrique et la résistance mécanique des prototypes. Le taux de cristallinité généré durant le procédé de moulage par compression des prototypes de plaques bipolaires ainsi que la cinétique de cristallisation jouent un rôle important pour l’optimisation des propriétés électriques et mécaniques visées.

Faced to the declining of energy resources and the increase of energy pollution, many researches are focused on the production of clean and sustainable energy in order to reduce the use of fossil sources energy since they are the main source of greenhouse gases production. The Proton Exchange Membrane Fuel Cell (PEMFC) is a technology that is becoming increasingly important for clean and sustainable energy production. The PEMFC is an electrochemical device that operates according to the principle of inverse electrolysis of water. A PEMFC converts the chemical reaction between hydrogen and oxygen (or air) into electrical power, heat and water, while releasing only water steam into the atmosphere. A PEMFC consists of a bended multilayer Electrode-Membrane-Electrode (EME), where the membrane is a solid polymer electrolyte separating the anode and the cathode. This set is built between two bipolar plates used for collecting the electrical current and distributing the gas (hydrogen or oxygen) through gas flow paths etched on each face of the bipolar plates. Most of the recent research focused on the improvement of PEMFC performances, their durability and the reduction of their production cost. A lot of work was done on the development and characterization of the different elements of PEMFCs, including the bipolar plates, considered as one of the most expensive and most massive parts. The design of the bipolar plates must consider several parameters. They should combine good mechanical strength, good chemical and thermal stability, sufficient electrical conductivity and good ability to remove heat generated in the heart of the cell. Metal bipolar plates are penalized by their corrosion resistance, which causes a reduction of the cell life. Those obtained from graphite are brittle and their manufacturing cost is high (mainly due to channels machining cost). Therefore, much research is focused on the development of new concepts of bipolar plates in order to replace metals and graphite by new polymer based composites. The latter appear to be more attractive because of their good processing ability that could help reducing the production cost of PEMFCs. However, much more research has to be done on the improvement of their electrical and mechanical properties, which is the main objective of the present thesis in which we propose: i) To develop by twin-screw extrusion process an optimized polymer nanocomposite material in which conductive solid additives are incorporated, including carbon nanotubes. ii) Fabricate a bipolar plate prototype from theses optimized nanocomposites by using the compression molding process under controlled cooling. In this project, two thermoplastic polymers have been used as the matrix: polyvinylidene fluoride (PVDF) and polyethylene terephthalate (PET). Three electrically conductive fillers were also used: carbon black, graphite and carbon nanotubes. Various combinations of these conductive additives were also studied in order to develop optimized nanocomposite formulations. Through-plane electrical conductivity of the developed nanocomposites as well as their mechanical properties have been carefully characterized. The obtained results showed that not only the combination of the conductive additives influences the nanocomposites through-plane conductivity and their mechanical properties, but also the distribution of these solid additives (which in turn depends on their nature, their size and their surface properties) helped to improve these properties. It has been observed that the surface treatment of the carbon nanotubes used in this study helped to increase both through-plane conductivity and mechanical strength of the developed bipolar plate prototypes. It was also observed that the crystallinity generated during bipolar plate cooling inside the compression mold as well as the crystallization rate play an important role in the optimization of the through-plane electrical conductivity and mechanical properties.

Formato

application/pdf

Identificador

TC-QQLA-32620

http://www.theses.ulaval.ca/2016/32620/32620.pdf

Idioma(s)

FR

Publicador

Université Laval

Direitos

© Nafaa Athmouni, 2016

Palavras-Chave #Matériaux nanocomposites #Composites polymères #Plaques bipolaires #Piles à combustible à membrane échangeuse de protons
Tipo

Electronic Thesis or Dissertation