894 resultados para Processor-Supervisor
Resumo:
The paper starts presents the work initially carried out by Queen's University and RSRE (now Qinetiq) in the development of advanced architectures and microchips based on systolic array architectures. The paper outlines how this has led to the development of highly complex designs for high definition TV and highlights work both on advanced signal processing architectures and tool flows for advanced systems. © 2006 IEEE.
Resumo:
The ability to detect harmful algal bloom (HAB) species and their toxins in real- or near real-time is a critical need for researchers studying HAB/toxin dynamics, as well as for coastal resource managers charged with monitoring bloom populations in order to mitigate their wide ranging impacts. The Environmental Sample Processor (ESP), a robotic electromechanical/fluidic system, was developed for the autonomous, subsurface application of molecular diagnostic tests and has successfully detected several HAB species using DNA probe arrays during field deployments. Since toxin production and thus the potential for public health and ecosystem effects varies considerably in natural phytoplankton populations, the concurrent detection of HAB species and their toxins onboard the ESP is essential. We describe herein the development of methods for extracting the algal toxin domoic acid (DA) from Pseudonitzschia cells (extraction efficiency >90%) and testing of samples using a competitive ELISA onboard the ESP. The assay detection limit is in the low ng/mL range (in extract), which corresponds to low ng/L levels of DA in seawater for a 0.5 L sample volume acquired by the ESP. We also report the first in situ detection of both a HAB organism (i.e., Pseudo-nitzschia) and its toxin, domoic acid, via the sequential (within 2-3 h) conduct of species- and toxin-specific assays during ESP deployments in Monterey Bay, CA, USA. Efforts are now underway to further refine the assay and conduct additional calibration exercises with the aim of obtaining more reliable, accurate estimates of bloom toxicity and thus their potential impacts. Published by Elsevier B.V.
Resumo:
The most promising way to maintain reliable data transfer across the rapidly fluctuating channels used by next generation multiple-input multiple-output communications schemes is to exploit run-time variable modulation and antenna configurations. This demands that the baseband signal processing architectures employed in the communications terminals must provide low cost and high performance with runtime reconfigurability. We present a softcore-processor based solution to this issue, and show for the first time, that such programmable architectures can enable real-time data operation for cutting-edge standards
such as 802.11n; furthermore, by exploiting deep processing pipelines and interleaved task execution, the cost and performance of these architectures is shown to be on a par with traditional dedicated circuit based solutions. We believe this to be the first such programmable architecture to achieve this, and the combination of implementation efficiency and programmability makes this implementation style the most promising approach for hosting such dynamic architectures.
Resumo:
Composers of digital music today have a bewildering variety of sound-processing tools and techniques at their disposal. At their best, these tools allow composers to hone a sound to perfection. However, they can also lead us into a routine which bypasses avenues of experimentation, simply because the known tools work so well and their sonic output is so attractive. An alternative strategy is oracular sound processing. An oracular sound processor creates a derived version of its input whose characteristics could not have been fully predicted, while affording the user little or no parametric control over the process.
Resumo:
The Cell Broadband Engine (BE) Architecture is a new heterogeneous multi-core architecture targeted at compute-intensive workloads. The architecture of the Cell BE has several features that are unique in high-performance general-purpose processors, most notably the extensive support for vectorization, scratch pad memories and explicit programming of direct memory accesses (DMAs) and mailbox communication. While these features strongly increase programming complexity, it is generally claimed that significant speedups can be obtained by using Cell BE processors. This paper presents our experiences with using the Cell BE architecture to accelerate Clustal W, a bio-informatics program for multiple sequence alignment. We report on how we apply the unique features of the Cell BE to Clustal W and how important each is in obtaining high performance. By making extensive use of vectorization and by parallelizing the application across all cores, we demonstrate a speedup of 24.4 times when using 16 synergistic processor units on a QS21 Cell Blade compared to single-thread execution on the power processing unit. As the Cell BE exploits a large number of slim cores, our highly optimized implementation is just 3.8 times faster than a 3-thread version running on an Intel Core2 Duo, as the latter processor exploits a small number of fat cores.