916 resultados para Physiological apparatus
Resumo:
To shed light on the potential efficacy of cycling as a resting modality in the treatment of intermittent claudication (IC), this study compared physiological and symptomatic responses to graded walking and cycling tests in claudicants. Sixteen subjects with peripheral arterial disease (resting ankle:brachial index (ABI) < 0.9) and IC completed a maximal graded treadmill walking (T) and cycle (C) Lest after three familiarization tests on each mode. During cacti test, symptoms, oxygen uptake (VO2), minute ventilation (V-E), (respiratory exchange ratio) (RER) and heart rate (HR) were measured, and for 10 min after each Lest the brachial and ankle systolic pressures were recorded, All but One subject experienced calf pain as the primary limiting symptom during T whereas the symptoms were more varied during C and included thigh pain, calf pain and dyspnoea, Although maximal exercise time was significantly longer on C than T (690 +/- 67 vs, 495 +/- 57 s), peak VO2, peak, V-E and peak heart rate during C and T were not different; whereas peak RER was higher during C. These responses during C and T were also positively 1, (P < 0.05) with each other, with the exception of RER. The postexercise systolic pressures were also not different between C and T. However, the peak decline ill ankle pressures from resting values after C and T were not correlated with each other. Thew data demonstrate that cycling and walking induce a similar level of metabolic and cardiovascular strain, but that the primary limiting symptoms and haemodynamic response in an individual's extremity, measured after exercise, can differ substantially between these two modes.
Resumo:
Enterohepatic recycling occurs by biliary excretion and intestinal reabsorption of a solute, sometimes with hepatic conjugation and intestinal deconjugation. Cycling is often associated with multiple peaks and a longer apparent half-life in a plasma concentration-time profile. Factors affecting biliary excretion include drug characteristics (chemical structure, polarity and molecular size), transport across sinusoidal plasma membrane and canniculae membranes, biotransformation and possible reabsorption from intrahepatic bile ductules. Intestinal reabsorption to complete the enterohepatic cycle may depend on hydrolysis of a drug conjugate by gut bacteria. Bioavailability is also affected by the extent of intestinal absorption, gut-wall P-glycoprotein efflux and gut-wall metabolism. Recently, there has been a considerable increase in our understanding of the role of transporters, of gene expression of intestinal and hepatic enzymes, and of hepatic zonation. Drugs, disease and genetics may result in induced or inhibited activity of transporters and metabolising enzymes. Reduced expression of one transporter, for example hepatic canalicular multidrug resistance-associated protein (MRP) 2, is often associated with enhanced expression of others, for example the usually quiescent basolateral efflux MRP3, to limit hepatic toxicity. In addition, physiologically relevant pharmacokinetic models, which describe enterohepatic recirculation in terms of its determinants (such as sporadic gall bladder emptying), have been developed. In general, enterohepatic recirculation may prolong the pharmacological effect of certain drugs and drug metabolites. Of particular importance is the potential amplifying effect of enterohepatic variability in defining differences in the bioavailability, apparent volume of distribution and clearance of a given compound. Genetic abnormalities, disease states, orally administered adsorbents and certain coadministered drugs all affect enterohepatic recycling.
Resumo:
Fluctuations in estrogen and progesterone during the menstrual cycle can cause changes in body systems other than the reproductive system. For example, progesterone is involved in the regulation of fluid balance in the renal tubules and innervation of the diaphragm via the phrenic nerve. However, few significant changes in the responses of the cardiovascular and respiratory systems, blood lactate, bodyweight, performance and ratings of perceived exertion are evident across the cycle. Nevertheless, substantial evidence exists to suggest that increased progesterone levels during the luteal phase cause increases in both core and skin temperatures and alter the temperature at which sweating begins during exposure to both ambient and hot environments. As heat illness is characterised by a significant increase in body temperature, it is feasible that an additional increase in core temperature during the luteal phase could place females at an increased risk of developing heat illness during this time. In addition, it is often argued that physiological gender differences such as oxygen consumption, percentage body fat and surface area-to-mass ratio place females at a higher risk of heat illness than males. This review examines various physiological responses to heat exposure during the menstrual cycle at rest and during exercise, and considers whether such changes increase the risk of heat illness in female athletes during a particular phase of the menstrual cycle.
Resumo:
A sample of recombinant inbred lines (RILs) was derived from a bi-parental cross between Lemont and BK88-BR6, which contrasted in maintenance of leaf water potential (LWP) and expression of osmotic adjustment (OA). Genotypic variation for LWP and OA, and their associations with yield determination under water deficit, was studied in a series of five field experiments. Genotypic variation in the maintenance of high LWP was consistent across water deficit experiments. In the determination of genotypic variation in the maintenance of LWP, rate of water deficit was not an important factor influencing ranking, but degree of water deficit, and phenological development stage were important, particularly around heading. Genotypic variation in expression of OA was also observed under water deficits during both vegetative and flowering stages but ranking was inconsistent across experiments. This was in part because of large experimental errors associated with its measurement, but also because the expression of OA was associated with extent of decline of LWP. The relationship between OA and LWP was demonstrated when data were combined across experiments for vegetative and flowering stages. Under water-limited conditions around flowering, grain yield reduction was mainly due to a increased spikelet sterility. Variation in OA was not related to grain yield nor yield components. There were however, negative phenotypic and genetic correlations between LWP and percentage spikelet sterility measured at flowering stage on panicles at the same development stage during a water deficit treatment. This suggests that traits contributing to the maintenance of high LWP minimized the effects of water deficit on spikelet sterility and consequently grain yield. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The purpose of this study was to determine the pharmacokinetics of [C-14]diclofenac, [C-14]salicylate and [H-3]clonidine using a single pass rat head perfusion preparation. The head was perfused with 3-[N-morpholino] propane-sulfonic acid-buffered Ringer's solution. Tc-99m-red blood cells and a drug were injected in a bolus into the internal carotid artery and collected from the posterior facial vein over 28 min. A two-barrier stochastic organ model was used to estimate the statistical moments of the solutes. Plasma, interstitial and cellular distribution volumes for the solutes ranged from 1.0 mL (diclofenac) to 1.6 mL (salicylate), 2.0 mL (diclofenac) to 4.2 mL (water) and 3.9 mL (salicylate) to 20.9 mL (diclofenac), respectively. A comparison of these volumes to water indicated some exclusion of the drugs from the interstitial space and salicylate from the cellular space. Permeability-surface area (PS) products calculated from plasma to interstitial fluid permeation clearances (CLPI) (range 0.02-0.40 mL s(-1)) and fractions of solute unbound in the perfusate were in the order: diclofenac>salicylate >clonidine>sucrose (from 41.8 to 0.10 mL s(-1)). The slow efflux of diclofenac, compared with clonidine and salicylate, may be related to its low average unbound fraction in the cells. This work accounts for the tail of disposition curves in describing pharmacokinetics in the head.
Resumo:
Little is known about causes of endemic rarity in plants. This study pioneered an approach that determined environmental variables in the rainforest habitat and generated physiological profiles for light, water, and nutrient relations for three endemically restricted versus widespread congeneric species' pairs. We found no overall consistent differences in the physiological variables between the group of restricted species and the group of widespread species, and congeneric species pairs were therefore examined individually. Availability of soil nutrients did not differ between restricted-widespread species sites suggesting that species grow under comparable nutrient conditions. Under ambient and manipulated higher light conditions, widespread Gardenia ovularis had a greater photosynthetic activity than restricted Gardenia actinocarpa suggesting that the two species differ in their photosynthetic abilities. Differences between Xanthostemon species included lower photosynthetic activity, higher transpiration rate, and a higher foliar manganese concentration in restricted Xanthostemon formosus compared to widespread Xanthostemon chrysanthus. It is suggested that X. formosus is restricted by its high water use to its current rainforest creek edge habitat, while X. chrysanthus grows in a range of environments, although naturally found in riparian rainforest. Restricted Archidendron kanisii had higher electron transport rates, greater dissipative capacity for removal of excess light, and more efficient investment of nitrogen into photosynthetic components, than its widespread relative Archidendron whitei. These observations and previous research suggest that restricted Archidendron kanisii is in the process of expanding its range. Physiological profiles suggest a different cause of rarity for each species. This has implications for the conservation strategies required for each species. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Water wetting is a crucial issue in carbon dioxide (CO.) corrosion of multiphase flow pipelines made from mild steel. This study demonstrates the use of a novel benchtop apparatus, a horizontal rotating cylinder, to study the effect of water wetting on CO2 corrosion of mild steel in two-phase flow. The setup is similar to a standard rotating cylinder except for its horizontal orientation and the presence of two phases-typically water and oil. The apparatus has been tested by using mass-transfer measurements and CO2 corrosion measurements in single-phase water flow. CO2 corrosion measurements were subsequently performed using a water/hexane mixture with water cuts varying between 5% and 50%. While the metal surface was primarily hydrophilic under stagnant. conditions, a variety of dynamic water wetting situations was encountered as the water cut and fluid velocity were altered. Threshold velocities were identified at various water cuts when the surface became oil-wet and corrosion stopped.
Resumo:
Chk1 kinase coordinates cell cycle progression and preserves genome integrity. Here, we show that chemical or genetic ablation of human Chk1 triggered supraphysiological accumulation of the S phase-promoting Cdc25A phosphatase, prevented ionizing radiation (IR)-induced degradation of Cdc25A, and caused radioresistant DNA synthesis (RDS). The basal turnover of Cdc25A operating in unperturbed S phase required Chk1-dependent phosphorylation of serines 123, 178, 278, and 292. IR-induced acceleration of Cdc25A proteolysis correlated with increased phosphate incorporation into these residues generated by a combined action of Chk1 and Chk2 kinases. Finally, phosphorylation of Chk1 by ATM was required to fully accelerate the IR-induced degradation of Cdc25A. Our results provide evidence that the mammalian S phase checkpoint functions via amplification of physiologically operating, Chk1-dependent mechanisms.
Resumo:
Despite the strong influence of plant architecture on crop yield, most crop models either ignore it or deal with it in a very rudimentary way. This paper demonstrates the feasibility of linking a model that simulates the morphogenesis and resultant architecture of individual cotton plants with a crop model that simulates the effects of environmental factors on critical physiological processes and resulting yield in cotton. First the varietal parameters of the models were made concordant. Then routines were developed to allocate the flower buds produced each day by the crop model amongst the potential positions generated by the architectural model. This allocation is done according to a set of heuristic rules. The final weight of individual bolls and the shedding of buds and fruit caused by water, N, and C stresses are processed in a similar manner. Observations of the positions of harvestable fruits, both within and between plants, made under a variety of agronomic conditions that had resulted in a broad range of plant architectures were compared to those predicted by the model with the same environmental inputs. As illustrated by comparisons of plant maps, the linked models performed reasonably well, though performance of the fruiting point allocation and shedding algorithms could probably be improved by further analysis of the spatial relationships of retained fruit. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The present study aimed to 1) examine the relationship between laboratory-based measures and high-intensity ultraendurance (HIU) performance during an intermittent 24-h relay ultraendurance mountain bike race (similar to20 min cycling, similar to60min recovery), and 2) examine physiological and performance based changes throughout the HIU event. Prior to the HIU event, four highly-trained male cyclists (age = 24.0 +/- 2.1 yr; mass = 75.0 +/- 2.7 kg; (V)over dot O-2peak = 70 +/- 3 ml.kg(-1).min(-1)) performed 1) a progressive exercise test to determine peak Volume of oxygen uptake ((V)over dot O-2peak), peak power output (PPO), and ventilatory threshold (T-vent), 2) time-to-fatigue tests at 100% (TF100) and 150% of PPO (TF150), and 3) a laboratory simulated 40-km time trial (TT40). Blood lactate (Lac(-)), haematocrit and haemoglobin were measured at 6-h intervals throughout the HIU event, while heart rate (HR) was recorded continuously. Intermittent HIU performance, performance HR, recovery HR, and Lac declined (P < 0.05), while plasma volume expanded (P < 0.05) during the HIU event. TF100 was related to the decline in lap time (r = -0.96; P < 0.05), and a trend (P = 0.081) was found between TF150 and average intermittent HIU speed (r = 0.92). However, other measures (V)over dot O-2peak, PPO, T-vent, and TT40) were not related to HIU performance. Measures of high-intensity endurance performance (TF100, TF150) were better predictors of intermittent HIU performance than traditional laboratory-based measures of aerobic capacity.
Resumo:
ABSTRACT Sorghum arundinaceum (Desv.) Stapf is a weed that belongs to the Poaceae family and is widespread throughout Brazil. Despite the frequent occurrence, infesting cultivated areas, there is little research concerning the biology and physiology of this species. The objective of this research was to evaluate the growth, carbon partitioning and physiological characteristics of the weed Sorghum arundinaceum in greenhouse. Plants were collected at regular intervals of seven days, from 22 to 113 days after transplanting (DAT). In each sample, we determined plant height, root volume, leaf area and dry matter, and subsequently we perfomed the growth analysis, we have determined the dry matter partitioning among organs, the accumulation of dry matter, the specific leaf area, the relative growth rate and leaf weight ratio. At 36, 78 and 113 DAT, the photosynthetic and transpiration rates, stomatal conductance, CO2 concentration and chlorophyll fluorescence were evaluated. The Sorghum arundinaceum reached 1.91 in height, with slow initial growth and allocated much of the biomass in the roots. The photosynthetic rate and the maximum quantum yield of FSII are similar throughout the growth cycle. At maturity the Sorghum arundinaceum presents higher values of transpiration rate, stomatal conductance and non-photochemical quenching coefficient (NPQ).
Resumo:
Batches of sylvatic females of Lutzomyia youngi (Phlebotominae) captured in a Shannon trap on twelve occasions over one year in a locality where subcutaneous leishmaniasis is endemic, near the city of Trujillo, Venezuela, were used to study: 1) the percentages of parous females according to previously established criteria and 2) the average number of eggs laid spontaneously by isolated females during 7 days after feeding on hamsters. The data on the batches of females captured on nights previous to the rainy period (prepluvial) were compared with those on females captured after the rains (postpluvial) . Significant differences were detected by variation analysis for two variables and different number of N, as also were consistent groupings by Duncan's Test for pre-and postpluvial lots of females. The females captured on nights prior to the rainy periods (January-March and August-September) presented higher rates of nulliparity (86-72%) and contained or laid a greater number of eggs (71-67) than those captured after the rains (March-June and November-December) which presented lower rates of nulliparity (60-24%) and a smaller number of eggs (50-30). The rainfall peaks occurred in April and September-October, respectively. It is considered that these differences can be used by epidemiological studies as a means of estimating the physiological age of female populations of L. youngy.
Resumo:
The purpose of this study is a cross-qualitative and quantitative gait analysis in 3 traumatic unilateral amputees using prosthesis with pin suspension compared to the use of prosthesis with a high vacuum suspension, the Harmony® system. In Portugal, there aren’t many studies made in the field of orthotic and prosthetic and knowledge about the number of amputees in the country. The only know is that the major cause of lower limb amputation is diabetes mellitus, being the most affected population the older age groups. The combination of technological developments with daily needs of the amputees is becoming more and more important for they better quality of life. This work was done during the curricular unit “Investigation in Prosthetics and Orthotics” class, in the 4th year of Health Technology School of Lisbon, in Portugal. This study analyzes if the change of suspension in transtibial prosthesis will influence some physiological response in amputees.
Resumo:
OBJECTIVE: To examine the effects of the length and timing of nighttime naps on performance and physiological functions, an experimental study was carried out under simulated night shift schedules. METHODS: Six students were recruited for this study that was composed of 5 experiments. Each experiment involved 3 consecutive days with one night shift (22:00-8:00) followed by daytime sleep and night sleep. The experiments had 5 conditions in which the length and timing of naps were manipulated: 0:00-1:00 (E60), 0:00-2:00 (E120), 4:00-5:00 (L60), 4:00-6:00 (L120), and no nap (No-nap). During the night shifts, participants underwent performance tests. A questionnaire on subjective fatigue and a critical flicker fusion frequency test were administered after the performance tests. Heart rate variability and rectal temperature were recorded continuously during the experiments. Polysomnography was also recorded during the nap. RESULTS: Sleep latency was shorter and sleep efficiency was higher in the nap in L60 and L120 than that in E60 and E120. Slow wave sleep in the naps in E120 and L120 was longer than that in E60 and L60. The mean reaction time in L60 became longer after the nap, and faster in E60 and E120. Earlier naps serve to counteract the decrement in performance and physiological functions during night shifts. Performance was somewhat improved by taking a 2-hour nap later in the shift, but deteriorated after a one-hour nap. CONCLUSIONS: Naps in the latter half of the night shift were superior to earlier naps in terms of sleep quality. However performance declined after a 1-hour nap taken later in the night shift due to sleep inertia. This study suggests that appropriate timing of a short nap must be carefully considered, such as a 60-min nap during the night shift.
Resumo:
The main purpose of the present study is to determine if the circadian rhythms present in the human bone marrow are likely to influence 3’- deoxy- 3’-[18F] Fluorothymidine (18F-FLT) uptake in the same organ. The 18F-FLT is a Thymidine analogous proliferation agent. The relatively high physiological uptake of this tracer in the bone marrow diminishes the Tumor/Background (T/B) ratio, decreasing the detection accuracy of PET/CT and possibly affecting SUV quantifications.