960 resultados para PHASE EXTRACTION TECHNIQUE
Resumo:
Abstract Brazilian wine production is characterized by Vitis labrusca grape varieties, especially the economically important Isabel cultivar, with over 80% of its production destined for table wine production. The objective of this study was to optimize and validate the conditions for extracting volatile compounds from wine with the solid-phase microextraction technique, using the response surface method. Based on the response surface analysis, it can be concluded that the central point values maximize the process of extracting volatile compounds from wine, i.e., an equilibrium time of 15 minutes, an extraction time of 35 minutes, and an extraction temperature of 30 °C. Esters were the most numerous compounds found under these extraction conditions, indicating that wines made from Isabel cultivar grapes are characterized by compounds that confer a fruity aroma; this finding corroborates the scientific literature.
Resumo:
Les dernières décennies ont été marquées par une augmentation du nombre des cas de cancers, ce qui a subséquemment conduit à une augmentation dans la consommation des agents de chimiothérapie. La toxicité et le caractère cancérogène de ces molécules justifient l’intérêt crucial porté à leur égard. Quelques études ont fait l’objet de détection et de quantification des agents de chimiothérapie dans des matrices environnementales. Dans ce projet, une méthode utilisant la chromatographie liquide couplée à la spectrométrie de masse en tandem (LC-MS/MS) précédée d’une extraction sur phase solide (SPE) automatisée ou en ligne a été développée pour la détection et la quantification d’un groupe de six agents de chimiothérapie. Parmi ceux-ci figurent les plus utilisés au Québec (gemcitabine, méthotrexate, cyclophosphamide, ifosfamide, irinotécan, épirubicine) et présentant des propriétés physico-chimiques et des structures chimiques différentes. La méthode développée a été validée dans une matrice réelle représentant l’affluent d’une station d’épuration dans la région de Montréal. Deux des six composés cytotoxiques étudiés en l’occurrence (cyclophosphamide et méthotrexate) ont été détectés dans huit échantillons sur les neuf qui ont été recensés, essentiellement au niveau de l’affluent et l’effluent de quelques stations d’épuration de la région de Montréal. Les résultats des analyses effectuées sur les échantillons réels ont montré qu’il n’y avait pas de différence significative dans la concentration entre l’affluent et l’effluent, et donc que les systèmes d’épuration semblent inefficaces pour la dégradation de ces molécules.
Resumo:
A variety of substrates have been used for fabrication of microchips for DNA extraction, PCR amplification, and DNA fragment separation, including the more conventional glass and silicon as well as alternative polymer-based materials. Polyester represents one such polymer, and the laser-printing of toner onto polyester films has been shown to be effective for generating polyester-toner (PeT) microfluidic devices with channel depths on the order of tens of micrometers. Here, we describe a novel and simple process that allows for the production of multilayer, high aspect-ratio PeT microdevices with substantially larger channel depths. This innovative process utilizes a CO(2) laser to create the microchannel in polyester sheets containing a uniform layer of printed toner, and multilayer devices can easily be constructed by sandwiching the channel layer between uncoated cover sheets of polyester containing precut access holes. The process allows the fabrication of deep channels, with similar to 270 mu m, and we demonstrate the effectiveness of multilayer PeT microchips for dynamic solid phase extraction (dSPE) and PCR amplification. With the former, we found that (i) more than 65% of DNA from 0.6 mu L of blood was recovered, (ii) the resultant DNA was concentrated to greater than 3 ng/mu L., (which was better than other chip-based extraction methods), and (iii) the DNA recovered was compatible with downstream microchip-based PCR amplification. Illustrative of the compatibility of PeT microchips with the PCR process, the successful amplification of a 520 bp fragment of lambda-phage DNA in a conventional thermocycler is shown. The ability to handle the diverse chemistries associated with DNA purification and extraction is a testimony to the potential utility of PeT microchips beyond separations and presents a promising new disposable platform for genetic analysis that is low cost and easy to fabricate.
Resumo:
A new approach based on microextraction by packed sorbent (MEPS) and reversed-phase high-throughput ultra high pressure liquid chromatography (UHPLC) method that uses a gradient elution and diode array detection to quantitate three biologically active flavonols in wines, myricetin, quercetin, and kaempferol, is described. In addition to performing routine experiments to establish the validity of the assay to internationally accepted criteria (selectivity, linearity, sensitivity, precision, accuracy), experiments are included to assess the effect of the important experimental parameters such as the type of sorbent material (C2, C8, C18, SIL, and C8/SCX), number of extraction cycles (extract-discard), elution volume, sample volume, and ethanol content, on the MEPS performance. The optimal conditions of MEPS extraction were obtained using C8 sorbent and small sample volumes (250 μL) in five extraction cycle and in a short time period (about 5 min for the entire sample preparation step). Under optimized conditions, excellent linearity View the MathML source(Rvalues2>0.9963), limits of detection of 0.006 μg mL−1 (quercetin) to 0.013 μg mL−1 (myricetin) and precision within 0.5–3.1% were observed for the target flavonols. The average recoveries of myricetin, quercetin and kaempferol for real samples were 83.0–97.7% with relative standard deviation (RSD, %) lower than 1.6%. The results obtained showed that the most abundant flavonol in the analyzed samples was myricetin (5.8 ± 3.7 μg mL−1). Quercetin (0.97 ± 0.41 μg mL−1) and kaempferol (0.66 ± 0.24 μg mL−1) were found in a lower concentration. The optimized MEPSC8 method was compared with a reverse-phase solid-phase extraction (SPE) procedure using as sorbent a macroporous copolymer made from a balanced ratio of two monomers, the lipophilic divinylbenzene and the hydrophilic N-vinylpyrrolidone (Oasis HLB) were used as reference. MEPSC8 approach offers an attractive alternative for analysis of flavonols in wines, providing a number of advantages including highest extraction efficiency (from 85.9 ± 0.9% to 92.1 ± 0.5%) in the shortest extraction time with low solvent consumption, fast sample throughput, more environmentally friendly and easy to perform.
Resumo:
A novel analytical approach, based on a miniaturized extraction technique, the microextraction by packed sorbent (MEPS), followed by ultrahigh pressure liquid chromatography (UHPLC) separation combined with a photodiode array (PDA) detection, has been developed and validated for the quantitative determination of sixteen biologically active phenolic constituents of wine. In addition to performing routine experiments to establish the validity of the assay to internationally accepted criteria (linearity, sensitivity, selectivity, precision, accuracy), experiments are included to assess the effect of the important experimental parameters on the MEPS performance such as the type of sorbent material (C2, C8, C18, SIL, and M1), number of extraction cycles (extract-discard), elution volume, sample volume, and ethanol content, were studied. The optimal conditions of MEPS extraction were obtained using C8 sorbent and small sample volumes (250 μL) in five extraction cycle and in a short time period (about 5 min for the entire sample preparation step). The wine bioactive phenolics were eluted by 250 μL of the mixture containing 95% methanol and 5% water, and the separation was carried out on a HSS T3 analytical column (100 mm × 2.1 mm, 1.8 μm particle size) using a binary mobile phase composed of aqueous 0.1% formic acid (eluent A) and methanol (eluent B) in the gradient elution mode (10 min of total analysis). The method gave satisfactory results in terms of linearity with r2-values > 0.9986 within the established concentration range. The LOD varied from 85 ng mL−1 (ferulic acid) to 0.32 μg mL−1 ((+)-catechin), whereas the LOQ values from 0.028 μg mL−1 (ferulic acid) to 1.08 μg mL−1 ((+)-catechin). Typical recoveries ranged between 81.1 and 99.6% for red wines and between 77.1 and 99.3% for white wines, with relative standard deviations (RSD) no larger than 10%. The extraction yields of the MEPSC8/UHPLC–PDA methodology were found between 78.1 (syringic acid) and 99.6% (o-coumaric acid) for red wines and between 76.2 and 99.1% for white wines. The inter-day precision, expressed as the relative standard deviation (RSD%), varied between 0.2% (p-coumaric and o-coumaric acids) and 7.5% (gentisic acid) while the intra-day precision between 0.2% (o-coumaric and cinnamic acids) and 4.7% (gallic acid and (−)-epicatechin). On the basis of analytical validation, it is shown that the MEPSC8/UHPLC–PDA methodology proves to be an improved, reliable, and ultra-fast approach for wine bioactive phenolics analysis, because of its capability for determining simultaneously in a single chromatographic run several bioactive metabolites with high sensitivity, selectivity and resolving power within only 10 min. Preliminary studies have been carried out on 34 real whole wine samples, in order to assess the performance of the described procedure. The new approach offers decreased sample preparation and analysis time, and moreover is cheaper, more environmentally friendly and easier to perform as compared to traditional methodologies.
Resumo:
In this study the feasibility of different extraction procedures was evaluated in order to test their potential for the extraction of the volatile (VOCs) and semi-volatile constituents (SVOCs) from wines. In this sense, and before they could be analysed by gas chromatography–quadrupole first stage masss spectrometry (GC–qMS), three different high-throughput miniaturized (ad)sorptive extraction techniques, based on solid phase extraction (SPE), microextraction by packed sorbents (MEPS) and solid phase microextraction (SPME), were studied for the first time together, for the extraction step. To achieve the most complete volatile and semi-volatile signature, distinct SPE (LiChrolut EN, Poropak Q, Styrene-Divinylbenzene and Amberlite XAD-2) and MEPS (C2, C8, C18, Silica and M1 (mixed C8-SCX)) sorbent materials, and different SPME fibre coatings (PA, PDMS, PEG, DVB/CAR/PDMS, PDMS/DVB, and CAR/PDMS), were tested and compared. All the extraction techniques were followed by GC–qMS analysis, which allowed the identification of up to 103 VOCs and SVOCs, distributed by distinct chemical families: higher alcohols, esters, fatty acids, carbonyl compounds and furan compounds. Mass spectra, standard compounds and retention index were used for identification purposes. SPE technique, using LiChrolut EN as sorbent (SPELiChrolut EN), was the most efficient method allowing for the identification of 78 VOCs and SVOCs, 63 and 19 more than MEPS and SPME techniques, respectively. In MEPS technique the best results in terms of number of extractable/identified compounds and total peak areas of volatile and semi-volatile fraction, were obtained by using C8 resin whereas DVB/CAR/PDMS was revealed the most efficient SPME coating to extract VOCs and SVOCs from Bual wine. Diethyl malate (18.8 ± 3.2%) was the main component found in wine SPELiChrolut EN extracts followed by ethyl succinate (13.5 ± 5.3%), 3-methyl-1-butanol (13.2 ± 1.7%), and 2-phenylethanol (11.2 ± 9.9%), while in SPMEDVB/CAR/PDMS technique 3-methyl-1-butanol (43.3 ± 0.6%) followed by diethyl succinate (18.9 ± 1.6%), and 2-furfural (10.4 ± 0.4%), are the major compounds. The major VOCs and SVOCs isolated by MEPSC8 were 3-methyl-1-butanol (26.8 ± 0.6%, from wine total volatile fraction), diethyl succinate (24.9 ± 0.8%), and diethyl malate (16.3 ± 0.9%). Regardless of the extraction technique, the highest extraction efficiency corresponds to esters and higher alcohols and the lowest to fatty acids. Despite some drawbacks associated with the SPE procedure such as the use of organic solvents, the time-consuming and tedious sampling procedure, it was observed that SPELiChrolut EN, revealed to be the most effective technique allowing the extraction of a higher number of compounds (78) rather than the other extraction techniques studied.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To make use of the isotope ratio of nonexchangeable hydrogen (δ2Hn (nonexchangeable)) of bulk soil organic matter (SOM), the mineral matrix (containing structural water of clay minerals) must be separated from SOM and samples need to be analyzed after H isotope equilibration. We present a novel technique for demineralization of soil samples with HF and dilute HCl and recovery of the SOM fraction solubilized in the HF demineralization solution via solid-phase extraction. Compared with existing techniques, organic C (Corg) and organic N (Norg) recovery of demineralized SOM concentrates was significantly increased (Corg recovery using existing techniques vs new demineralization method: 58% vs 78%; Norg recovery: 60% vs 78%). Chemicals used for the demineralization treatment did not affect δ2Hn values as revealed by spiking with deuterated water. The new demineralization method minimized organic matter losses and thus artificial H isotope fractionation, opening up the opportunity to use δ2Hn analyses of SOM as a new tool in paleoclimatology or geospatial forensics.
Resumo:
In this work, the volatile chromatographic profiles of roasted Arabica coffees, previously analyzed for their sensorial attributes, were explored by principal component analysis. The volatile extraction technique used was the solid phase microextraction. The correlation optimized warping algorithm was used to align the gas chromatographic profiles. Fifty four compounds were found to be related to the sensorial attributes investigated. The volatiles pyrrole, 1-methyl-pyrrole, cyclopentanone, dihydro-2-methyl-3-furanone, furfural, 2-ethyl-5-methyl-pyrazine, 2-etenyl-n-methyl-pyrazine, 5-methyl-2-propionyl-furan compounds were important for the differentiation of coffee beverage according to the flavour, cleanliness and overall quality. Two figures of merit, sensitivity and specificity (or selectivity), were used to interpret the sensory attributes studied.
Resumo:
This work describes the construction and testing of a simple pressurized solvent extraction (PSE) system. A mixture of acetone:water (80:20), 80 ºC and 103.5 bar, was used to extract two herbicides (Diuron and Bromacil) from a sample of polluted soil, followed by identification and quantification by high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). The system was also used to extract soybean oil (70 ºC and 69 bar) using pentane. The extracted oil was weighed and characterized through the fatty acid methyl ester analysis (myristic (< 0.3%), palmitic (16.3%), stearic (2.8%), oleic (24.5%), linoleic (46.3%), linolenic (9.6%), araquidic (0.3%), gadoleic (< 0.3%), and behenic (0.3%) acids) using high-resolution gas chromatography with flame ionization detection (HRGC-FID). PSE results were compared with those obtained using classical procedures: Soxhlet extraction for the soybean oil and solid-liquid extraction followed by solid-phase extraction (SLE-SPE) for the herbicides. The results showed: 21.25 ± 0.36% (m/m) of oil in the soybeans using the PSE system and 21.55 ± 0.65% (m/m) using the soxhlet extraction system; extraction efficiency (recovery) of herbicides Diuron and Bromacil of 88.7 ± 4.5% and 106.6 ± 8.1%, respectively, using the PSE system, and 96.8 ± 1.0% and 94.2 ± 3.9%, respectively, with the SLP-SPE system; limit of detection (LOD) and limit of quantification (LOQ) for Diuron of 0.012 mg kg-1 and 0.040 mg kg-1, respectively; LOD and LOQ for Bromacil of 0.025 mg kg-1 and 0.083 mg kg-1, respectively. The linearity used ranged from 0.04 to 1.50 mg L-1 for Diuron and from 0.08 to 1.50 mg L-1 for Bromacil. In conclusion, using the PSE system, due to high pressure and temperature, it is possible to make efficient, fast extractions with reduced solvent consumption in an inert atmosphere, which prevents sample and analyte decomposition.
Resumo:
In this work, the development and evaluation of a hyphenated flow injection-capillary electrophoresis system with on-line pre-concentration is described. Preliminary tests were performed to investigate the influence of flow rates over the analytical signals. Results revealed losses in terms of sensitivity of the FIA-CE system when compared to the conventional CE system. To overcome signal decrease and to make the system more efficient, a lower flow rate was set and an anionic resin column was added to the flow manifold in order to pre-concentrate the analyte. The pre-concentration FIA-CE system presented a sensitivity improvement of about 660% and there was only a small increase of 8% in total peak dispersion. These results have confirmed the great potential of the proposed system for many analytical tasks especially for low concentration samples.
Resumo:
Wild felids and canids are usually the main predators in the food chains where they dwell and are almost invisible to behavior and ecology researchers. Due to their grooming behavior, they tend to swallow shed hair, which shows up in the feces. DNA found in hair shafts can be used in molecular studies that can unravel, for instance, genetic variability, reproductive mode and family structure, and in some species, it is even possible to estimate migration and dispersion rates in given populations. First, however, DNA must be extracted from hair. We extracted successfully and dependably hair shaft DNA from eight wild Brazilian felids, ocelot, margay, oncilla, Geoffroy's cat, pampas cat, jaguarundi, puma, and jaguar, as well as the domestic cat and from three wild Brazilian canids, maned wolf, crab-eating fox, and hoary fox, as well as the domestic dog. Hair samples came mostly from feces collected at the Sao Paulo Zoo and were also gathered from non-sedated pet or from recently dead wild animals and were also collected from museum specimens. Fractions of hair samples were stained before DNA extraction, while most samples were not. Our extraction protocol is based on a feather DNA extraction technique, based in the phenol: chloroform: isoamyl alcohol general method, with proteinase K as digestive enzyme.
Resumo:
A flow injection (FI) micelle-mediated separation/preconcentration procedure for the determination of lead and cadmium by flame atomic absorption spectrometry (FAAS) has been proposed. The analytes reacted with 1-(2-thiazolylazo)-2-naphthol (TAN) to form hydrophobic chelates, which were extracted into the micelles of 0.05% (w/v) Triton X-114 in a solution buffered at pH 8.4. In the preconcentration stage, the micellar solution was continuously injected into a flow system with four mini-columns packed with cotton, glass wool. or TNT compresses for phase separation. The analytes-containing micelles were eluted from the mini-columns by a stream of 3 mol L(-1) HCl solution and the analytes were determined by FAAS. Chemical and flow variables affecting the preconcentration of the analytes were studied. For 15 mL. of preconcentrated solution, the enhancement factors varied between 15.1 and 20.3, the limits of detection were approximately 4.5 and 0.75 mu g L(-1) for lead and cadmium, respectively. For a solution containing 100 and 10 mu g L(-1) of lead and cadmium, respectively, the R.S.D. values varied from 1.6 to 3.2% (n = 7). The accuracy of the preconcentration system was evaluated by recovery measurements on spiked water samples. The method was susceptible to matrix effects, but these interferences were minimized by adding barium ions as masking agent in the sample solutions, and recoveries from spiked sample varied in the range of 95.1-107.3%. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The extensive use of antineoplastic agents in chemotherapy may be at risk to health care workers involved in the preparation and administration of these drugs. In this study cyclophosphamide, a drug classified as a human carcinogen, was quantified by adapting a previous analytical method using gas chromatography coupled to mass spectrometry (GC-MS) after solid phase extraction with diatomaceous earth. The drug was measured by analysis in surfaces (wipe samples) and gloves, collected from four different hospitals, before and after the practice of cleaning procedures, and the use of a closed-system device for the preparation and administration. Validation results were satisfactory and cyclophosphamide levels ranging from below the quantification limit to 141000 ng. Our findings demonstrated that surfaces and materials contamination was found in all hospitals during the traditional open technique for preparation and administration of cyclophosphamide and a significant reduction in contamination when a closed-system device was used. However, some values were considered unexpected, especially those obtained from samples collected after the cleaning surfaces.
Resumo:
This work is the first attempt to apply aqueous two-phase mixed micellar systems (ATPMS) of the nonionic surfactant Triton X-114 and the anionic one AOT to extract clavulanic acid (CA) from broth fermented by Streptomyces clavuligerus. Cloud points were determined in McIlvane buffer pH 6.5 with or without NaCl, and diagram phases/coexistence curves were constructed. CA partition was investigated following a 2(4)-full factorial design in which AOT (0.022, 0.033 and 0.044% w/w), Triton X-114 (1.0, 3.0 and 5.0% w/w) and NaCl (0, 2.85 and 5.70% w/w) concentrations and temperature (24,26 and 28 degrees C) were selected as independent variables, and CA partition coefficient (K(CA)) and yield in the top phase (eta(CA)) as responses. CA partitioned always to the top, micelle-poor phase. The regression analysis pointed out that NaCl concentration and interaction between temperature and Triton X-114 concentration had statistically significant effects on K(CA), while eta(CA) was mainly influenced by temperature, Triton X-114 concentration and their interaction. Different ATPMS compositions were then needed to maximize these responses, specifically 0.022% (w/w) AOT, 5% (w/w) Triton X-114 for K(CA) (2.08), and 0.044% (w/w) AOT, 1% (w/w) Triton X-114 for eta(CA) (98.7%), both at 24 degrees C without NaCl. Since at 0.022% (w/w) AOT, 1% (w/w) Triton X-114 and 28 degrees C without NaCl the system was able to ensure satisfactory intermediate results (K(CA) = 1.48; eta(CA) = 86.3%), these conditions were selected as the best ones. These preliminary results are of concern for possible industrial application, because CA partition to the dilute phase can simplify the subsequent purification protocol. (C) 2011 Elsevier B.V. All rights reserved.