97 resultados para Oligodeoxynucleotides


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of the two fluorinated tricyclic nucleosides 6?-F-tc-T and 6?-F-tc-5MeC, as well as the corresponding building blocks for oligonucleotide assembly, was accomplished. An X-ray analysis of N4-benzoylated 6?-F-tc-5MeC reavealed a 2?-exo (north) conformation of the furanose ring, characterizing it as an RNA mimic. In contrast to observations in the bicyclo-DNA series, no short contact between the fluorine atom and the H6 of the base, reminiscent of a nonclassical F···H hydrogen bond, could be observed. Tm measurements of modified oligodeoxynucleotides with complementary RNA showed slightly sequence-dependent duplex stabilization profiles with maximum ?Tm/mod values of +4.5 °C for 6?-F-tc-5MeC and +1 °C for 6?-F-tc-T. In comparison with parent tc-modified oligonucleotides, no relevant changes in Tm were detected, attributing the fluorine substituent a neutral role in RNA affinity. A structural analysis of duplexes with DNA and RNA by CD-spectroscopy revealed a shift from B- to A-type conformation induced by the 6?-F-tc-nucleosides. This is not a specific ?fluorine effect?, as the same is also observed for the parent tc-modifications. The two fluorinated tc-nucleosides were also incorporated into a pure tricyclo-DNA backbone and showed no discrimination in Tm with complementary RNA, demonstrating that 6?-F substitution is also compatible within fully modified tc-oligonucleotides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We synthesized pyrrolidino-C-nucleosides, incorporated them into oligodeoxynucleotides and investigated their pairing properties. The thermal duplex and triplex stabilities were measured. While triplex formation is destabilized in the case of pyrrolidino-pseudo-U and -T, pyrrolidino-pseudo-iso-C leads to an increase of the Tm value for third strand dissociation. Duplexes are destabilized with all pyrrolidino-C-nucleosides

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We recently reported on the synthesis and pairing properties of the DNA analogue bicyclo[3.2.1]amide DNA (bca-DNA). In this analogue the nucleobases are attached via a linear, 4-bond amide-linker to a structurally preorganized sugar-phosphate backbone unit. To define the importance of the degree of structural rigidity of the bca-backbone unit on the pairing properties, we designed the structurally simpler cyclopentane amide DNA (cpa-DNA), in which the bicyclo[3.2.1]-scaffold was reduced to a cyclopentane unit while the base-linker was left unchanged. Here we present a synthetic route to the enantiomerically pure cpa-DNA monomers and the corresponding phosphoramidites containing the bases A and T, starting from a known, achiral precursor in 9 and 12 steps, respectively. Fully modified oligodeoxynucleotides were synthesized by standard solid-phase oligonucleotide chemistry, and their base-pairing properties with complementary oligonucleotides of the DNA-, RNA-, bca-DNA-, and cpa-DNA-backbones were assessed by UV melting curves and CD-spectroscopic methods. We found that cpa-oligoadenylates form duplexes with complementary DNA that are less stable by -2.7 degrees C/mod. compared to DNA. The corresponding cpa-oligothymidylates do not participate in complementary base-pairing with any of the investigated backbone systems except with its own (homo-duplex). As its congener bca-DNA, cpa-DNA seems to prefer left-handed helical duplex structures with DNA or with itself as indicated by the CD spectra

Relevância:

10.00% 10.00%

Publicador:

Resumo:

cpa-DNA monomers containing the bases adenine and thymine have been synthesized starting from the known compound 1 in 12 steps. Partially and fully modified cpa-thymidine and cpa-adenosine containing oligodeoxynucleotides were synthesized by standard oligonucleotide chemistry. Fully modified homo-cpa-A sequences lead to duplex destabilization by -1.4 degrees C/mod. relative to DNA. As its congener bca-DNA, cpa-DNA prefers left-handed duplex formation where possible

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the synthesis and incorporation into alpha-DNA of a novel conformationally constrained alpha-nucleoside analogue. The carbohydrate part of this analogue was prepared in 4 steps from the known bicyclic precursor 1 via a stereospecific, intramolecular, Et 3B mediated radical addition to a keto-function as the key step. The thus obtained intermediate 4 was transformed stereoselectively into the corresponding alpha-nucleoside analogues 7 and 8 containing the bases adenine and thymine, and were further elaborated into the phosphoramidite building blocks 11 and 12 . Both building blocks were incorporated into alpha-oligodeoxynucleotides and their pairing behavior to parallel complementary DNA studied by UV-melting experiments. Single substitutions of alpha-deoxyribnucleoside units by the new analogues in the center of duplexes were found to be thermally destabilizing by only -0.8 to -3.1›C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tricyclo (tc)-DNA belongs to the class of conformationally constrained DNA analogs that show enhanced binding properties to DNA and RNA. We prepared tc-oligonucleotides up to 17 nt in length, and evaluated their binding efficiency and selectivity towards complementary RNA, their biological stability in serum, their RNase H inducing potential and their antisense activity in a cellular assay. Relative to RNA or 2'-O-Me-phosphorothioate (PS)-RNA, fully modified tc-oligodeoxynucleotides, 10-17 nt in length, show enhanced selectivity and enhanced thermal stability by approximately 1 degrees C/modification in binding to RNA targets. Tricyclodeoxyoligonucleotides are completely stable in heat-deactivated fetal calf serum at 37 degree C. Moreover, tc-DNA-RNA duplexes are not substrates for RNase H. To test for antisense effects in vivo, we used HeLa cell lines stably expressing the human beta-globin gene with two different point mutations in the second intron. These mutations lead to the inclusion of an aberrant exon in beta-globin mRNA. Lipofectamine-mediated delivery of a 17mer tc-oligodeoxynucleotide complementary to the 3'-cryptic splice site results in correction of aberrant splicing already at nanomolar concentrations with up to 100-fold enhanced efficiency relative to a 2'-O-Me-PS-RNA oligonucleotide of the same length and sequence. In contrast to 2'-O-Me-PS-RNA, tc-DNA shows antisense activity even in the absence of lipofectamine, albeit only at much higher oligonucleotide concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Allergen-induced asthma is the leading form of asthma and a chronic condition worldwide. Common allergens are known to contribute to the pathogenesis of this disease. Murine models of allergic asthma have mostly used an intraperitoneal route of sensitization (not airway) to study this disease. Allergic asthma pathophysiology involves the activation of TH2-specific cells, which triggers production of IgE antibodies, the up-regulation of TH2-specific cytokines (i.e. IL-4, IL-5, IL-9 and IL-13), increased airway eosinophilia, and mucin hypersecretion. Although there are several therapeutics currently treating asthmatic patients, some of these treatments can result in drug tolerance and may be linked to increased mortality. CpG oligodeoxynucleotides (ODNs) is a synthetic ligand that targets Toll-like Receptor (TLR) 9. It has been evaluated as a therapeutic agent for the treatment of cancer, infectious diseases, and for treating allergy and asthma. PUL-042 is also a synthetic TLR ligand and is composed of two agonists against TLR2/6 heterodimer and TLR9. Previous studies have evaluated PUL-042 for its ability to confer resistance against bacterial and viral lung infection. These findings, combined with studies performed using CpG ODNs, led to speculation that PUL-042 dampens the immune response in allergen-induced asthma. My thesis research investigated airway route sensitization and airway delivery of PUL-042 to evaluate its effects in reducing an allergen-induced asthma phenotype in a murine model. The results of this study contribute to the foundation for future investigations to evaluate the efficacy of PUL-042 as a novel therapy in allergic-asthma disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A majority of persons who have sustained spinal cord injury (SCI) develop chronic pain. While most investigators have assumed that the critical mechanisms underlying neuropathic pain after SCI are restricted to the central nervous system (CNS), recent studies showed that contusive SCI results in a large increase in spontaneous activity in primary nociceptors, which is correlated significantly with mechanical allodynia and thermal hyperalgesia. Upregulation of ion channel transient receptor vanilloid 1 (TRPV1) has been observed in the dorsal horn of the spinal cord after SCI, and reduction of SCI-induced hyperalgesia by a TRPV1 antagonist has been claimed. However, the possibility that SCI enhances TRPV1 expression and function in nociceptors has not been tested. I produced contusive SCI at thoracic level T10 in adult, male rats and harvested lumbar (L4/L5) dorsal root ganglia (DRG) from sham-treated and SCI rats 3 days and 1 month after injury, as well as from age-matched naive control rats. Whole-cell patch clamp recordings were made from small (soma diameter <30 >μm) DRG neurons 18 hours after dissociation. Capsaicin-induced currents were significantly increased 1 month, but not 3 days, after SCI compared to neurons from control animals. In addition, Ca2+ transients imaged during capsaicin application were significantly greater 1 month after SCI. Western blot experiments indicated that expression of TRPV1 protein in DRG is also increased 1 month after SCI. A major role for TRPV1 channels in pain-related behavior was indicated by the ability of a specific TRPV1 antagonist, AMG9810, to reverse SCI-induced hypersensitivity of hindlimb withdrawal responses to heat and mechanical stimuli. Similar reversal of behavioral hypersensitivity was induced by intrathecal delivery of oligodeoxynucleotides antisense to TRPV1, which knocked down TRPV1 protein and reduced capsaicin-evoked currents. TRPV1 knockdown also decreased the incidence of spontaneous activity in dissociated nociceptors after SCI. Limited activation of TRPV1 was found to induce prolonged repetitive firing without accommodation or desensitization, and this effect was enhanced by SCI. These data suggest that SCI enhances TRPV1 expression and function in primary nociceptors, increasing the excitability and spontaneous activity of these neurons, thus contributing to chronic pain after SCI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-Hodgkin's lymphomas are common tumors of the human immune system, primarily of B cell lineage (NHL-B). Negative growth regulation in the B cell lineage is mediated primarily through the TGF-β/SMAD signaling pathway that regulates a variety of tumor suppressor genes. Ski was originally identified as a transforming oncoprotein, whereas SnoN is an isoform of the Sno protein that shares a large region of homology with Ski. In this study, we show that Ski/SnoN are endogenously over-expressed both in patients' lymphoma cells and NHL-B cell lines. Exogenous TGF-β1 treatment induces down-regulation of Ski and SnoN oncoprotein expression in an NHL-B cell line, implying that Ski and SnoN modulate the TGF-β signaling pathway and are involved in cell growth regulation. Furthermore, we have developed an NHL-B cell line (DB) that has a null mutation in TGF-β receptor type II. In this mutant cell line, Ski/SnoN proteins are not down-regulated in response to TGF-β1 treatment, suggesting that downregulation of Ski and SnoN proteins in NHL-B require an intact functional TGF-β signaling pathway Resting normal B cells do not express Ski until activated by antigens and exogenous cytokines, whereas a low level of SnoN is also present in peripheral blood Go B cells. In contrast, autonomously growing NHL-B cells over-express Ski and SnoN, implying that Ski and SnoN are important cell cycle regulators. To further investigate a possible link between reduction of the Ski protein level and growth inhibition, Ski antisense oligodeoxynucleotides were transfected into NHL-B cells. The Ski protein level was found to decrease to less than 40%, resulting in restoring the effect of TGF-β and leading to cell growth inhibition and G1 cell cycle arrest. Co-immunoprecipitation experiments demonstrated that Ski associates with Smad4 in the nucleus, strongly suggesting that over-expression of the nuclear protein Ski and/or SnoN negatively regulates the TGF-β pathway, possibly by modulating Smad-mediated tumor suppressor gene expression. Together, in NHL-B, the TGF-β/SMAD growth inhibitory pathway is usually intact, but over-expression of the Ski and/or SnoN, which binds to Smad4, abrogates the negative regulatory effects of TGF-β/SMAD in lymphoma cell growth and potentiates the growth potential of neoplastic B cells. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relaxin is a polypeptide hormone that has diverse effects on reproductive and non-reproductive tissues. Relaxin activates the G-protein coupled receptors, LGR7 and LRG8. Early studies described increased cAMP and protein kinase A activity upon relaxin treatment, but cAMP accumulation alone could not account for all of the relaxin-mediated effects. We utilized the human monocyte cell line THP-1 to study the mechanism of relaxin-stimulated CAMP production. ^ Relaxin treatment in THP-1 cells produces a biphasic time course in cAMP accumulation, where the first peak appears as early as 1–2 minutes with a second peak at 10–20 minutes. Selective inhibitors for phosphoinositide 3-kinase (P13K), such as wortmannin and LY294002, show a dose-dependent inhibition of relaxin-stimulated cAMP accumulation, specific for the second peak of the relaxin time course. Neither the effects of relaxin nor the inhibition of relaxin by LY294002 is mediated by the activity of phosphodiesterases. Furthermore, LY294002 blocks upregulation of vascular endothelial growth factor transcript levels by relaxin. ^ To further delineate relaxin signaling pathways, we searched for downstream targets of PI3K that could activate adenylyl cyclase (AC). Protein kinase C ζ (PKCζ) was a prime candidate because it activates types II and V AC. Chelerythrine chloride (a general PKC inhibitor) inhibits relaxin-induced cAMP production to the same degree as LY294002 (∼40%). Relaxin stimulates PKCζ translocation to the plasma membrane in THP-1, MCF-7, PHM1-31, and MMC cells, as shown by immunocytochemistry. PKCζ translocation is P13K-dependent and independent of cAMP production. Antisense PKCζ oligodeoxynucleotides (PKCζ-ODNs) deplete both PKCζ transcript and protein levels in THP-1 cells. PKCζ-ODNs abolish relaxin-mediated PKCζ translocation and inhibit relaxin stimulation of cAMP by 40%, as compared to mock and random ODN controls. Treatment with LY294002 in the presence of PKCζ-ODNs results in little further inhibition. Taken together, we present a novel role for PI3K and PKCζ in relaxin stimulation of cAMP and provide the first example of the PKCζ regulation of AC in an endogenous system. Furthermore, we have identified higher order complexes of AC isoforms and PKA anchoring proteins in attempts to explain the differential coupling of relaxin to cAMP and PI3K-signaling pathways in various cell types. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unmethylated CpG dinucleotides in particular base contexts (CpG-S motifs) are relatively common in bacterial DNA but are rare in vertebrate DNA. B cells and monocytes have the ability to detect such CpG-S motifs that trigger innate immune defenses with production of Th1-like cytokines. Despite comparable levels of unmethylated CpG dinucleotides, DNA from serotype 12 adenovirus is immune-stimulatory, but serotype 2 is nonstimulatory and can even inhibit activation by bacterial DNA. In type 12 genomes, the distribution of CpG-flanking bases is similar to that predicted by chance. However, in type 2 adenoviral DNA the immune stimulatory CpG-S motifs are outnumbered by a 15- to 30-fold excess of CpG dinucleotides in clusters of direct repeats or with a C on the 5′ side or a G on the 3′ side. Synthetic oligodeoxynucleotides containing these putative neutralizing (CpG-N) motifs block immune activation by CpG-S motifs in vitro and in vivo. Eliminating 52 of the 134 CpG-N motifs present in a DNA vaccine markedly enhanced its Th1-like function in vivo, which was increased further by the addition of CpG-S motifs. Thus, depending on the CpG motif, prokaryotic DNA can be either immune-stimulatory or neutralizing. These results have important implications for understanding microbial pathogenesis and molecular evolution and for the clinical development of DNA vaccines and gene therapy vectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure of complexes made from DNA and suitable lipids (lipoplex, Lx) was examined by cryo-electron microscopy (cryoEM). We observed a distinct concentric ring-like pattern with striated shells when using plasmid DNA. These spherical multilamellar particles have a mean diameter of 254 nm with repetitive spacing of 7.5 nm with striation of 5.3 nm width. Small angle x-ray scattering revealed repetitive ordering of 6.9 nm, suggesting a lamellar structure containing at least 12 layers. This concentric and lamellar structure with different packing regimes also was observed by cryoEM when using linear double-stranded DNA, single-stranded DNA, and oligodeoxynucleotides. DNA chains could be visualized in DNA/lipid complexes. Such specific supramolecular organization is the result of thermodynamic forces, which cause compaction to occur through concentric winding of DNA in a liquid crystalline phase. CryoEM examination of T4 phage DNA packed either in T4 capsides or in lipidic particles showed similar patterns. Small angle x-ray scattering suggested an hexagonal phase in Lx-T4 DNA. Our results indicate that both lamellar and hexagonal phases may coexist in the same Lx preparation or particle and that transition between both phases may depend on equilibrium influenced by type and length of the DNA used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neutrophils are important effector cells in immunity to microorganisms, particularly bacteria. Here, we show that the process of neutrophil apoptosis is delayed in several inflammatory diseases, suggesting that this phenomenon may represent a general feature contributing to the development of neutrophilia, and, therefore, in many cases to host defense against infection. The delay of neutrophil apoptosis was associated with markedly reduced levels of Bax, a pro-apoptotic member of the Bcl-2 family. Such Bax-deficient cells were also observed upon stimulation of normal neutrophils with cytokines present at sites of neutrophilic inflammation, such as granulocyte and granulocyte–macrophage colony-stimulating factors, in vitro. Moreover, Bax-deficient neutrophils generated by using Bax antisense oligodeoxynucleotides demonstrated delayed apoptosis, providing direct evidence for a role of Bax as a pro-apoptotic molecule in these cells. Interestingly, the Bax gene was reexpressed in Bax-deficient neutrophils under conditions of cytokine withdrawal. Thus, both granulocyte expansion and the resolution of inflammation appear to be regulated by the expression of the Bax gene in neutrophils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuclease resistance and RNA affinity are key criteria in the search for optimal antisense nucleic acid modifications, but the origins of the various levels of resistance to nuclease degradation conferred by chemical modification of DNA and RNA are currently not understood. The 2′-O-aminopropyl (AP)-RNA modification displays the highest nuclease resistance among all phosphodiester-based analogues and its RNA binding affinity surpasses that of phosphorothioate DNA by 1°C per modified residue. We found that oligodeoxynucleotides containing AP-RNA residues at their 3′ ends competitively inhibit the degradation of single-stranded DNA by the Escherichia coli Klenow fragment (KF) 3′-5′ exonuclease and snake venom phosphodiesterase. To shed light on the origins of nuclease resistance brought about by the AP modification, we determined the crystal structure of an A-form DNA duplex with AP-RNA modifications at 1.6-Å resolution. In addition, the crystal structures of complexes between short DNA fragments carrying AP-RNA modifications and wild-type KF were determined at resolutions between 2.2 and 3.0 Å and compared with the structure of the complex between oligo(dT) and the D355A/E357A KF mutant. The structural models suggest that interference of the positively charged 2′-O-substituent with the metal ion binding site B of the exonuclease allows AP-RNA to effectively slow down degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three small nucleolar RNAs (snoRNAs), E1, E2 and E3, have been described that have unique sequences and interact directly with unique segments of pre-rRNA in vivo. In this report, injection of antisense oligodeoxynucleotides into Xenopus laevis oocytes was used to target the specific degradation of these snoRNAs. Specific disruptions of pre-rRNA processing were then observed, which were reversed by injection of the corresponding in vitro-synthesized snoRNA. Degradation of each of these three snoRNAs produced a unique rRNA maturation phenotype. E1 RNA depletion shut down 18 rRNA formation, without overaccumulation of 20S pre-rRNA. After E2 RNA degradation, production of 18S rRNA and 36S pre-rRNA stopped, and 38S pre-rRNA accumulated, without overaccumulation of 20S pre-rRNA. E3 RNA depletion induced the accumulation of 36S pre-rRNA. This suggests that each of these snoRNAs plays a different role in pre-rRNA processing and indicates that E1 and E2 RNAs are essential for 18S rRNA formation. The available data support the proposal that these snoRNAs are at least involved in pre-rRNA processing at the following pre-rRNA cleavage sites: E1 at the 5′ end and E2 at the 3′ end of 18S rRNA, and E3 at or near the 5′ end of 5.8S rRNA.