949 resultados para Non-Negative Operators
Resumo:
This paper is concerned with tensor clustering with the assistance of dimensionality reduction approaches. A class of formulation for tensor clustering is introduced based on tensor Tucker decomposition models. In this formulation, an extra tensor mode is formed by a collection of tensors of the same dimensions and then used to assist a Tucker decomposition in order to achieve data dimensionality reduction. We design two types of clustering models for the tensors: PCA Tensor Clustering model and Non-negative Tensor Clustering model, by utilizing different regularizations. The tensor clustering can thus be solved by the optimization method based on the alternative coordinate scheme. Interestingly, our experiments show that the proposed models yield comparable or even better performance compared to most recent clustering algorithms based on matrix factorization.
Resumo:
We present a one-parameter extension of the raise and peel one-dimensional growth model. The model is defined in the configuration space of Dyck (RSOS) paths. Tiles from a rarefied gas hit the interface and change its shape. The adsorption rates are local but the desorption rates are non-local; they depend not only on the cluster hit by the tile but also on the total number of peaks (local maxima) belonging to all the clusters of the configuration. The domain of the parameter is determined by the condition that the rates are non-negative. In the finite-size scaling limit, the model is conformal invariant in the whole open domain. The parameter appears in the sound velocity only. At the boundary of the domain, the stationary state is an adsorbing state and conformal invariance is lost. The model allows us to check the universality of non-local observables in the raise and peel model. An example is given.
Resumo:
We consider a 1-dimensional reaction-diffusion equation with nonlinear boundary conditions of logistic type with delay. We deal with non-negative solutions and analyze the stability behavior of its unique positive equilibrium solution, which is given by the constant function u equivalent to 1. We show that if the delay is small, this equilibrium solution is asymptotically stable, similar as in the case without delay. We also show that, as the delay goes to infinity, this equilibrium becomes unstable and undergoes a cascade of Hopf bifurcations. The structure of this cascade will depend on the parameters appearing in the equation. This equation shows some dynamical behavior that differs from the case where the nonlinearity with delay is in the interior of the domain. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The goal of this paper is to analyze the character of the first Hopf bifurcation (subcritical versus supercritical) that appears in a one-dimensional reaction-diffusion equation with nonlinear boundary conditions of logistic type with delay. We showed in the previous work [Arrieta et al., 2010] that if the delay is small, the unique non-negative equilibrium solution is asymptotically stable. We also showed that, as the delay increases and crosses certain critical value, this equilibrium becomes unstable and undergoes a Hopf bifurcation. This bifurcation is the first one of a cascade occurring as the delay goes to infinity. The structure of this cascade will depend on the parameters appearing in the equation. In this paper, we show that the first bifurcation that occurs is supercritical, that is, when the parameter is bigger than the delay bifurcation value, stable periodic orbits branch off from the constant equilibrium.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Constrained intervals, intervals as a mapping from [0, 1] to polynomials of degree one (linear functions) with non-negative slopes, and arithmetic on constrained intervals generate a space that turns out to be a cancellative abelian monoid albeit with a richer set of properties than the usual (standard) space of interval arithmetic. This means that not only do we have the classical embedding as developed by H. Radström, S. Markov, and the extension of E. Kaucher but the properties of these polynomials. We study the geometry of the embedding of intervals into a quasilinear space and some of the properties of the mapping of constrained intervals into a space of polynomials. It is assumed that the reader is familiar with the basic notions of interval arithmetic and interval analysis. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
This study aimed at estimating the number of cases of non-negative serological reactions to Chagas disease in blood donors at the Blood Center of Botucatu, São Paulo, Brazil, from 2003 to 2010 and at relating them to their cities of origin. Five hundred and seventy-four non-negative results for Chagas disease were evaluated. Of these, 371 (64.8%) were reagent, and 203 (35.4%) were inconclusive. The prevalence of Chagas disease in blood donors was 0.05%. There were, on average, 72 cases/year, and a prevalence of males was observed (64.8%). Forty-three (7.49%) individuals were 18 to 30 years old; 92 (16.02%) were 31 to 40; 147 (25.61%) 41 to 50, and 292 (50.87%) were older than 50 years. It was observed that 29.3% of females with reagent serology were at their fertile age (18 and 45 years). The majority of donors were originally from cities in the southwestern and central regions of São Paulo, but individuals from other states contributed with 20%. The provenance of most donors was the city of Botucatu/SP, followed by the city of Taquarituba/SP. Therefore, the profile of donors at this blood center favors the occurrence of a larger number of non-negative serological reactions. Although there has been a significant reduction in the number of new cases/year for this disease, it is still a public-health problem, and results suggest the need for new epidemiological assessments in the studied region.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Doenças Tropicais - FMB
Resumo:
Via variational methods, we study multiplicity of solutions for the problem {-Delta u = lambda b(x)vertical bar u vertical bar(q-2)u + au + g(x, u) in Omega, u - 0 on partial derivative Omega, where a simple example for g( x, u) is |u|(p-2)u; here a, lambda are real parameters, 1 < q < 2 < p <= 2* and b(x) is a function in a suitable space L-sigma. We obtain a class of sign changing coefficients b(x) for which two non-negative solutions exist for any lambda > 0, and a total of five nontrivial solutions are obtained when lambda is small and a >= lambda(1). Note that this type of results are valid even in the critical case.
Resumo:
2-Methylisoborneol (MIB) and geosmin (GSM) are sub products from algae decomposition and, depending on their concentration, can be toxic: otherwise, they give unpleasant taste and odor to water. For water treatment companies it is important to constantly monitor their presence in the distributed water and avoid further costumer complaints. Lower-cost and easy-to-read instrumentation would be very promising in this regard. In this study, we evaluate the potentiality of an electronic tongue (ET) system based on non-specific polymeric sensors and impedance measurements in monitoring MIB and GSM in water samples. Principal component analysis (PCA) applied to the generated data matrix indicated that this ET was capable to perform with remarkable reproducibility the discrimination of these two contaminants in either distilled or tap water, in concentrations as low as 25 ng L-1. Nonetheless, this analysis methodology was rather qualitative and laborious, and the outputs it provided were greatly subjective. Also, data analysis based on PCA severely restricts automation of the measuring system or its use by non-specialized operators. To circumvent these drawbacks, a fuzzy controller was designed to quantitatively perform sample classification while providing outputs in simpler data charts. For instance, the ET along with the referred fuzzy controller performed with a 100% hit rate the quantification of MIB and GSM samples in distilled and tap water. The hit rate could be read directly from the plot. The lower cost of these polymeric sensors allied to the especial features of the fuzzy controller (easiness on programming and numerical outputs) provided initial requirements for developing an automated ET system to monitor odorant species in water production and distribution. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Im Mittelpunkt dieser Arbeit steht Beweis der Existenz- und Eindeutigkeit von Quadraturformeln, die für das Qualokationsverfahren geeignet sind. Letzteres ist ein von Sloan, Wendland und Chandler entwickeltes Verfahren zur numerischen Behandlung von Randintegralgleichungen auf glatten Kurven (allgemeiner: periodische Pseudodifferentialgleichungen). Es erreicht die gleichen Konvergenzordnungen wie das Petrov-Galerkin-Verfahren, wenn man durch den Operator bestimmte Quadraturformeln verwendet. Zunächst werden die hier behandelten Pseudodifferentialoperatoren und das Qualokationsverfahren vorgestellt. Anschließend wird eine Theorie zur Existenz und Eindeutigkeit von Quadraturformeln entwickelt. Ein wesentliches Hilfsmittel hierzu ist die hier bewiesene Verallgemeinerung eines Satzes von Nürnberger über die Existenz und Eindeutigkeit von Quadraturformeln mit positiven Gewichten, die exakt für Tschebyscheff-Räume sind. Es wird schließlich gezeigt, dass es stets eindeutig bestimmte Quadraturformeln gibt, welche die in den Arbeiten von Sloan und Wendland formulierten Bedingungen erfüllen. Desweiteren werden 2-Punkt-Quadraturformeln für so genannte einfache Operatoren bestimmt, mit welchen das Qualokationsverfahren mit einem Testraum von stückweise konstanten Funktionen eine höhere Konvergenzordnung hat. Außerdem wird gezeigt, dass es für nicht-einfache Operatoren im Allgemeinen keine Quadraturformel gibt, mit der die Konvergenzordnung höher als beim Petrov-Galerkin-Verfahren ist. Das letzte Kapitel beinhaltet schließlich numerische Tests mit Operatoren mit konstanten und variablen Koeffizienten, welche die theoretischen Ergebnisse der vorangehenden Kapitel bestätigen.
Resumo:
Eine Menge B nicht negativer ganzer Zahlen heißt Basis h-ter Ordnung, wenn jede nicht negative ganze Zahl Summe von höchstens h Elementen von B ist. Eine der großen Fragen der additiven Zahlentheorie ist die nach der effektivsten Basis h-ter Ordnung für ein gegebenes h>=2. Im Fokus des Interesses steht dabei der immer noch offene Fall h=2. Bezeichnet B(x) die Anzahl der Elemente b aus B mit 0= af(x), wobei f die Wurzelfunktion bezeichne. Andererseits gibt es Basen B zweiter Ordnung mit B(x) <= cf(x). Daher kann man den Limes superior S(B), den Limes inferior s(B) sowie im Falle der Existenz den Limes d(B) des Quotienten B(x) / f(x) als Dichtefunktionen von Basen zweiter Ordnung betrachten. J. W. S. Cassels konstruierte 1957 eine Basis C zweiter Ordnung mit d(C)=5,196…. G. Hofmeister gab 2001 eine Basis H zweiter Ordnung mit asymptotischer Wurzeldichte d(H)=4,638… an. In der vorliegenden Arbeit wird eine Basis S zweiter Ordnung mit asymptotischer Wurzeldichte d(S)=3,464… konstruiert. Darüber hinaus wird für die von J. W. S. Cassels, für die von G. Hofmeister und für die in dieser Arbeit verwendete Klasse von Basen zweiter Ordnung gezeigt, dass die asymptotische Wurzeldichte innerhalb der jeweiligen Klasse nicht mehr zu verbessern ist. Bisher war die Frage nach möglichen Verbesserungen innerhalb der jeweiligen Konstruktionsprinzipien offen geblieben.
Resumo:
We consider the heat flux through a domain with subregions in which the thermal capacity approaches zero. In these subregions the parabolic heat equation degenerates to an elliptic one. We show the well-posedness of such parabolic-elliptic differential equations for general non-negative L-infinity-capacities and study the continuity of the solutions with respect to the capacity, thus giving a rigorous justification for modeling a small thermal capacity by setting it to zero. We also characterize weak directional derivatives of the temperature with respect to capacity as solutions of related parabolic-elliptic problems.