829 resultados para Neuro-fuzzy systems
Resumo:
A health-monitoring and life-estimation strategy for composite rotor blades is developed in this work. The cross-sectional stiffness reduction obtained by physics-based models is expressed as a function of the life of the structure using a recent phenomenological damage model. This stiffness reduction is further used to study the behavior of measurable system parameters such as blade deflections, loads, and strains of a composite rotor blade in static analysis and forward flight. The simulated measurements are obtained using an aeroelastic analysis of the composite rotor blade based on the finite element in space and time with physics-based damage modes that are then linked to the life consumption of the blade. The model-based measurements are contaminated with noise to simulate real data. Genetic fuzzy systems are developed for global online prediction of physical damage and life consumption using displacement- and force-based measurement deviations between damaged and undamaged conditions. Furthermore, local online prediction of physical damage and life consumption is done using strains measured along the blade length. It is observed that the life consumption in the matrix-cracking zone is about 12-15% and life consumption in debonding/delamination zone is about 45-55% of the total life of the blade. It is also observed that the success rate of the genetic fuzzy systems depends upon the number of measurements, type of measurements and training, and the testing noise level. The genetic fuzzy systems work quite well with noisy data and are recommended for online structural health monitoring of composite helicopter rotor blades.
Resumo:
The problem of classification of time series data is an interesting problem in the field of data mining. Even though several algorithms have been proposed for the problem of time series classification we have developed an innovative algorithm which is computationally fast and accurate in several cases when compared with 1NN classifier. In our method we are calculating the fuzzy membership of each test pattern to be classified to each class. We have experimented with 6 benchmark datasets and compared our method with 1NN classifier.
Resumo:
In this paper, inspired by two very different, successful metric theories such us the real view-point of Lowen's approach spaces and the probabilistic field of Kramosil and Michalek's fuzzymetric spaces, we present a family of spaces, called fuzzy approach spaces, that are appropriate to handle, at the same time, both measure conceptions. To do that, we study the underlying metric interrelationships between the above mentioned theories, obtaining six postulates that allow us to consider such kind of spaces in a unique category. As a result, the natural way in which metric spaces can be embedded in both classes leads to a commutative categorical scheme. Each postulate is interpreted in the context of the study of the evolution of fuzzy systems. First properties of fuzzy approach spaces are introduced, including a topology. Finally, we describe a fixed point theorem in the setting of fuzzy approach spaces that can be particularized to the previous existing measure spaces.
Resumo:
Este trabalho investiga a implementação de sistemas fuzzy com circuitos eletrônicos. Tais sistemas têm demonstrado sua capacidade de resolver diversos tipos de problemas em várias aplicações de engenharia, em especial nas relacionadas com controle de processos. Para processos mais complexos, o raciocínio aproximado da lógica fuzzy fornece uma maneira de compreender o comportamento do sistema, permitindo a interpolação aproximada entre situações observadas de entrada e saída. A implementação de um sistema fuzzy pode ser baseada em hardware, em software ou em ambos. Tipicamente, as implementações em software utilizam ambientes de programação integrados com simulação, de modo a facilitar o trabalho do projetista. As implementações em hardware, tradicionais ou evolutivas, podem ser analógicas ou digitais e viabilizam sistemas de maior desempenho. Este trabalho tem por objetivo pesquisar a implementação eletrônica de sistemas fuzzy, a fim de viabilizar a criação de sistemas reais capazes de realizar o mapeamento de entrada e saída adequado. O foco é a utilização de uma plataforma com uma arquitetura analógico-digital baseada em uma tabela de mapeamento armazenada em uma memória de alta capacidade. Memórias do tipo SD (Secure Digital) foram estudadas e utilizadas na construção do protótipo eletrônico da plataforma. Também foram desenvolvidos estudos sobre a quantização, especificamente sobre a possibilidade de redução do número de bits. Com a implementação realizada é possível desenvolver um sistema fuzzy num ambiente simulado (Matlab), configurar a plataforma e executar o sistema fuzzy diretamente na plataforma eletrônica. Os testes com o protótipo construído comprovaram seu bom funcionamento.
Resumo:
Geração e Simplificação da Base de Conhecimento de um Sistema Híbrido Fuzzy- Genético propõe uma metodologia para o desenvolvimento da base de conhecimento de sistemas fuzzy, fundamentada em técnicas de computação evolucionária. Os sistemas fuzzy evoluídos são avaliados segundo dois critérios distintos: desempenho e interpretabilidade. Uma metodologia para a análise de problemas multiobjetivo utilizando a Lógica Fuzzy foi também desenvolvida para esse fim e incorporada ao processo de avaliação dos AGs. Os sistemas fuzzy evoluídos foram avaliados através de simulações computacionais e os resultados obtidos foram comparados com os obtidos por outros métodos em diferentes tipos de aplicações. O uso da metodologia proposta demonstrou que os sistemas fuzzy evoluídos possuem um bom desempenho aliado a uma boa interpretabilidade da sua base de conhecimento, tornando viável a sua utilização no projeto de sistemas reais.
Resumo:
Esta dissertaçãoo investiga a utilização de Particle Swarm Optimization (PSO) para a obtenção automática de sistemas fuzzy do tipo Mamdani, tendo como insumo apenas as definições das variáveis do problema, seus domínios e a função objetivo. Neste trabalho utilizam-se algumas técnicas conhecidas na tentativa de minimizar a obtenção de sistemas fuzzy que não sejam coerentes. As principais técnicas usadas são o método de Wang e Mendell, chamado de WM, para auxiliar na obtenção de regras, e os conceitos de clusterização para obtenção das funções de pertinência. Na função de avaliação proposta, considera-se não somente a acurácia do sistema fuzzy, através da medida do erro, mas também a sua interpretabilidade, através da medida da compacidade, que consiste da quantidade de regras e funções membro, da distinguibilidade, que permite evitar que as funções membro não se confundam, e da completude, que permite avaliar que as funções membro abranjam o máximo do domínio. O propósito deste trabalho consiste no desenvolvimento de um algoritmo baseado em PSO, cuja função de avaliação congregue todos esses objetivos. Com parâmetros bem definidos, o algoritmo pode ser utilizado em diversos tipos de problemas sem qualquer alteração, tornando totalmente automática a obtenção de sistemas fuzzy. Com este intuito, o algoritmo proposto é testado utilizando alguns problemas pré-selecionados, que foram classificados em dois grupos, com base no tipo de função: contínua ou discreta. Nos testes com funções contínuas, são utilizados sistemas tridimensionais, com duas variáveis de entrada e uma de saída, enquanto nos testes com funções discretas são utilizados problemas de classificação, sendo um com quatro variáveis e outro com seis variáveis de entrada. Os resultados gerados pelo algoritmo proposto são comparados com aqueles obtidos em outros trabalhos.
Resumo:
Com o avanço no desenvolvimento e utilização de veículos e robôs autoequilibrantes, faz-se necessário a investigação de controladores capazes de atender os diversos desafios relacionados à utilização desses sistemas. Neste trabalho foi estudado o controle de equilíbrio e posição de um robô auto-equilibrante de duas rodas. O interesse particular nesta aplicação vem da sua estrutura e da riqueza de sua dinâmica física. Por ser um problema complexo e não trivial há grande interesse em avaliar os controladores inteligentes. A primeira parte da dissertação aborda o desenvolvimento de um controle clássico do tipo PID, para em seguida ser comparado com a implementação de dois tipos de controladores inteligentes: On-line Neuro Fuzzy Control (ONFC) e Proportional-Integral-Derivative Neural-Network (PIDNN). Também é apresentada a implementação dos controladores em uma plataforma de hardware, utilizando o kit LEGO Mindstorm, e numa plataforma de simulação utilizando o MATLAB-Simulink. Em seguida, dois estudos de casos são desenvolvidos visando comparar o desempenho dos controladores. O primeiro caso avalia o controle de equilíbrio e posição do robô auto-equilibrante de duas rodas sobre um terreno plano tendo como interesse observar o desempenho intrínseco do sistema sob ausência de fatores externos. O segundo caso estuda o controle de equilíbrio e posição do robô em terrenos irregulares visando investigar a resposta do sistema sob influência de condições adversas em seu ambiente. Finalmente, o desempenho de cada um dos controladores desenvolvidos é discutido, verificando-se resultados competitivos no controle do robô auto-equilibrante de duas rodas.
Resumo:
Tianjin University of Technology
Resumo:
R. Jensen and Q. Shen. Fuzzy-Rough Sets Assisted Attribute Selection. IEEE Transactions on Fuzzy Systems, vol. 15, no. 1, pp. 73-89, 2007.
Resumo:
X. Fu, Q. Shen and R. Zhao. 'Towards fuzzy compositional modelling,' In Proceedings of the 16th International Conference on Fuzzy Systems, 2007, pp. 1233-1238. Sponsorship: EPSRC
Resumo:
P. Lingras and R. Jensen, 'Survey of Rough and Fuzzy Hybridization,' Proceedings of the 16th International Conference on Fuzzy Systems (FUZZ-IEEE'07), pp. 125-130, 2007.
Resumo:
R. Jensen and Q. Shen, 'Tolerance-based and Fuzzy-Rough Feature Selection,' Proceedings of the 16th International Conference on Fuzzy Systems (FUZZ-IEEE'07), pp. 877-882, 2007.
Resumo:
Z. Huang and Q. Shen. Fuzzy interpolative reasoning via scale and move transformation. IEEE Transactions on Fuzzy Systems, 14(2):340-359.
Resumo:
M. Galea and Q. Shen. Iterative vs Simultaneous Fuzzy Rule Induction. Proceedings of the 14th International Conference on Fuzzy Systems, pages 767-772.
Resumo:
K. Rasmani and Q. Shen. Subsethood-based Fuzzy Rule Models and their Application to Student Performance Classification. Proceedings of the 14th International Conference on Fuzzy Systems, pages 755-760, 2005.